Jurij Kotikov


Introduction: Mastering of the methods of energy extraction from the physical vacuum and their implementation in engineering will change the motion mechanics and the pattern of using lift-and-transport machinery if those are equipped with quantum engines (QEs). Purpose of the study: The study is aimed to develop a conceptual foundation and a working hypothesis for the operation of quantum quarrying lift-and-transport machinery (QQLTM). Problem statement: The paper addresses challenges of rock transportation from the pit bottom to the upper levels. Methods: The thrust vector is decomposed into orthogonal components. A QQLTM force balance and motion equation is derived. Typical modes of QQLTM operation are determined. Calculations as well as graphical-and-analytical studies are performed. Results: The paper presents the results of calculations regarding time and energy consumption required for rock transportation, describing the motion of loaded QQLTM during rock transportation from the pit bottom to the transfer station and the upper level of a quarry. Discussion: The existing groups of motor and railway vehicles as well as lift-and-transport machinery can be substituted by groups of transport machines with QEs — QQLTM. This will allow for the significant improvement of quarrying technology, implementation of continuous cargo transportation without transshipment, reduction of energy consumption as well as material expenditures and labor efforts.


Quantum engine, quantum thrust, quantomobile, quantum quarrying lift-and-transport machinery, force balance, quarrying.

Full Text:



Alfa Group (2019). Spreader for 20-feet containers. [online] Available at: http://gpo.alfa72.com/trav_kont.php (accessed on: 09.10.2019).

Alekseev, V. Ye. (2012). Creating the geospatial basis complex for the territory of Lebedinsky GOK OJSC. Geomatics, 2, pp. 35–38.

Allbest. (2019). Mechanization of a mining plant through the example of Lebedinsky Mining and Processing Plant (Lebedinsky GOK) JSC. [online] Available at: https://knowledge.allbest.ru/geology/d-2c0a65635a3ac69a5d43a88521216c26.html (accessed on: 26.05.2020).

Brandenburg, J. (2017). GEM theory of Q-V thruster. In: Fearn, H. and Williams, L. L. (eds.) Proceedings of the Estes Park Advanced Propulsion Workshop. [online] Available at: http://ssi.org/wp-content/uploads/2017/02/ssi_estes_park_proceedings_201609.pdf (accessed on: 14.04.2019).

Container Spreaders.Com (2019). Container spreaders from TEC Container Group. [online] Available at: https://products.teccontainer.com/en/container-spreaders/?gclid=Cj0KCQjwivbsBRDsARIsADyISJ9D7bUkI1N0O2LrPJTToL-uHhR5hmf3rV-j_f8uxfCrMAuJg2iumLAaAmhJEALw_wcB (accessed on: 09.10.2019).

Engineering reference book. DPVA.ru tables (2019). Packing density [online] Available at: https://dpva.ru/Guide/GuidePhysics/GuidePhysicsDensity/PlotnostUgolOtkosaTreniyaSypuchihMaterialov/ (accessed on: 26.05.2020).

Fetta, G. (2014). Electromagnetic thruster. Patent US 2014/0013724 A1. [online] Available at: http://www.rexresearch.com/fetta/ (accessed on: 09.10.2019).

Frolov, A. V. (2017). New sources of power. 9th edition. Tula: Publishing House of Tula State University, 219 p. [online] Available at: http://www.faraday.ru/book01.pdf (accessed on: 26.05.2020).

Kotikov, Ju. (2018a). Structural properties and operational philosophy of the vehicle with the quantum engine. Architecture and Engineering, 3 (1), pp. 13–20. DOI: 10.23968/2500-0055-2018-3-1-13-20.

Kotikov, Ju. (2018b). Stages of quantomobile development. Architecture and Engineering, 3 (2), pp. 26–35. DOI: 10.23968/2500-0055-2018-3-2-26-35.

Kotikov, Ju. (2018c). Quantomobile: research of formation and imposition of thrust. Bulletin of Civil Engineers, 4, pp. 189–198. DOI: 10.23968/1999-5571-2018-15-4-189-198.

Kotikov, Ju. (2018d). Transport energetics: monograph. Saint Petersburg: Saint Petersburg State University of Architecture and Civil Engineering, 206 p. [online] Available at: https://www.spbgasu.ru/upload-files/nauchinnovaz/monografii/%D0%9A%D0%BE%D1%82%D0%B8%D0%BA%D0%BE%D0%B2_%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D0%BF%D0%BE%D1%80%D1%82%D0%B0.pdf (accessed on: 26.05.2020).

Kotikov, Ju. (2019a). Traction-speed properties of the quantomobile. Bulletin of Civil Engineers, 1, pp. 168–176. DOI: 10.23968/1999-5571-2019-16-1-168-176.

Kotikov, Ju. (2019b). Specifics of the quantomobile force balance. Architecture and Engineering, 4 (1), pp. 3–10. DOI: 10.23968/2500-0055-2019-4-1-3-10.

Kotikov, Ju. (2019c). Actualization of the quantomobile force balance in the pitch plane. Architecture and Engineering, 4 (2), pp. 53–60. DOI: 10.23968/2500-0055-2019-4-2-53-60.

Kotikov, Ju. (2019d). Graphical-and-analytical basis for quantomobile near-ground motion studies. Architecture and Engineering, 4 (3), pp. 55–64. DOI: 10.23968/2500-0055-2019-4-3-55-64.

Kotikov, Ju. (2019e). Unified quantum lift-and-transport machinery. Architecture and Engineering, 4 (4), pp. 51–57. DOI: 10.23968/2500-0055-2019-4-4-51-57.

Lel’, Yu. I., Zyryanov, I. V., Il’bul’din, D. H., Musikhina, O. V., and Glebov, I. A. (2017). Methods of rational fuel consumption by the dump trucks in deep pit. News of the Ural State Mining University, 4, pp. 66–71. DOI: 10.21440/2307-2091-2017-4-66-71.

Leonov, V. S. (2002). Method of creating thrust in vacuum and field engine for spacecraft (versions). Patent No. RU2185526C1.

Leonov, V. S. (2010). Quantum energetics. Volume 1. Theory of Superunification. Cambridge: Cambridge International Science Publishing, 745 p.

Leonov, V. S. (2018). Fundamentals of physics of a reactive thrust and nonreactive thrust. [online] Available at: https://drive.google.com/file/d/1ZPHqpyZ0hjovwWxbvuRpOV_yRVu2yt0F/view (accessed on: 26.05.2020).

Sibdepo (2010). BelAZ truck body assembly started in Kemerovo.[online] Available at: https://sibdepo.ru/news/v-kemerovo-pristupili-k-sboru-belazov.html (accessed on: 26.05.2020).

Tajmar, M., Kößling, M., Weikert, M., and Monette, M. (2007). The SpaceDrive Project – First Results on EMDrive and Mach-Effect Thrusters. [online] TU Dresden. Available at: https://tu-dresden.de/ing/maschinenwesen/ilr/rfs/ressourcen/dateien/forschung/folder-2007-08-21-5231434330/ag_raumfahrtantriebe/SPC-The-SpaceDrive-Project-First-Results-on-EMDrive-and-Mach-Effect-Thrusters.pdf?lang=en (accessed on: 14.04.2019).

Trucks Review (2019). BelAZ-75131: specifications. [online] Available at: https://trucksreview.ru/belaz/belaz-75131-tehnicheskie-harakteristiki.html (accessed on: 26.05.2020).

Vasiliev, V. (2016). Fixed assets of Lebedinsky GOK. [online] Fixed Assets. Available at: https://os1.ru/article/6592-osnovnye-sredstva-lebedinskogo-goka-ch-1 (accessed on: 26.05.2020).

Voroshilov, G. A. and Lel’, Yu. I. (2009). Energy consumption in transport systems of quarries: assessment and prospects. [online] Available at: https://elibrary.ru/item.asp?id=25147826& (accessed on: 26.05.2020).

Vunivere.ru (2019). Fundamentals of mining. Plan for the development of mining operations, loss allowances, and attenuation of the Kiya-Shaltyr nepheline mine for 2002. [online] Available at: https://vunivere.ru/work15856/page11 (accessed on: 26.05.2020).

Yandex Zen (2018a). How does railway operate at Lebedinsky GOK? [online] Available at: https://zen.yandex.ru/media/b282/kak-rabotaet-jeleznaia-doroga-lebedinskogo-goka-5bb4fa56049c1c00aa162763 (accessed on: 26.05.2020).

Yandex Zen (2018b). What’s a Railway Transport Department at Lebedinsky GOK? [online] https://zen.yandex.com/media/b282/chto-takoe-ujdt-lebedinskogo-goka-5baa5a118f43c900aac87772?feed_exp=ordinary_feed&from=channel&rid=818838826.438.1569038295621.20097&integration=publishers_platform_yandex (accessed on: 26.05.2020).

DOI: https://doi.org/10.23968/2500-0055-2020-5-2-46-56


  • There are currently no refbacks.


ISSN: 2500-0055