VALORIZATION OF DREDGED SEDIMENTS FROM DAMS IN PAVEMENT DESIGN

Boumediene Serbah, Maghnia Asmahane Bourabah, Joanna Eid, Salima Bouchemella, Moussaab Hariche, Nabil Abou-Bekr, Said Taibi

Abstract


Introduction: This study is part of research aimed at valorizing dredged sediments through the development of formulations for use in road engineering. The purpose of the study was to determine if the materials selected for pavement layers comply with road design standards, in particular, with specific requirements for density, grain size, plastic properties, organic matter, and mechanical performance. Methods: To determine the physical-chemical and mechanical characteristics of the dredged sediments obtained from samples taken from the Bakhadda dam located in western Algeria’s semi-arid climate, the sediments were treated with binders in small amounts (3% lime (L), 6% cement (C)) for reuse in road construction. The study focused on the evolution of physical and mechanical characteristics of the treated sediments, including LL, PI, VBS, immediate bearing index (IBI%), UCS, tensile strength Ϭt, as well as small strain modulus ESS and large strain modulus E50. The results showed that adding lime and cement to the dredged sediments improved their strength, as evidenced by the increased compressive strength (UCS) over time for the samples containing different amounts of binders (3%L, 6%C, and 3%L + 6%C). Additionally, the effect of the water content on the mechanical properties of the formulations was demonstrated. The study showed that the strength increased when the water content decreased.

Keywords


valorization, dredged sediments, compaction, modulus of elasticity, UCS, tensile strength, eco-geo-material, road construction

Full Text:

PDF

References


Akula, P., Naik, S. R., and Little, D. N. (2021). Evaluating the durability of lime-stabilized soil mixtures using soil mineralogy and computational geochemistry. Transportation Research Record: Journal of the Transportation Research Board, Vol. 2675, Issue 9, pp. 1469–1481. DOI: 10.1177/03611981211007848.

NF EN ISO 10390:2022 French & European Standard, Soil, treated biowaste and sludge – Determination of pH, March 2022

Association Française de Normalisation (1991). NF P94-054. Sols : reconnaissance et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau. Paris: Association Française de Normalisation, 6 p.

Association Française de Normalisation (1992a). NF P11-300. Exécution des terrassements -Classification des matériaux utilisables dans la construction des remblais et des couches de forme d'infrastructures routières. Paris: Association Française de Normalisation, 21 p.

Association Française de Normalisation (1992b). NF P94-057. Sols : reconnaissance et essais - Analyse granulométrique des sols Méthode par sédimentation. Paris: Association Française de Normalisation, 17 p.

Association Française de Normalisation (1993a). NF P94-051. Sols : reconnaissance et essais - Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Paris: Association Française de Normalisation, 15 p.

Association Française de Normalisation (1993b). NF P94-055. Sols : reconnaissance et essais - Détermination de la teneur pondérale en matières organiques d'un sol - Méthode chimique. Paris: Association Française de Normalisation, 7 p.

Association Française de Normalisation (1993c). NF P94-068. Sols : Reconnaissance et essais - Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux - Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache. Paris: Association Française de Normalisation, 8 p.

Association Française de Normalisation (1993d). NF P94-093. Sols : Reconnaissance et essais - Détermination des références de compactage d'un matériau - Essai Proctor Normal - Essai Proctor modifié. Paris: Association Française de Normalisation, 28 p.

Association Française de Normalisation (1993e). NF P98-230-2. Essais relatifs aux chaussées - Préparation des matériaux traités aux liants hydrauliques ou non traités - Partie 2 : fabrication des éprouvettes de sables ou de sols fins par compression statique. Paris: Association Française de Normalisation, 10 p.

Association Française de Normalisation (1995). XP-P94-041. Sols : reconnaissance et essais - Identification granulométrique. Méthode de tamisage par voie humide. Paris: Association Française de Normalisation, 11 p.

Association Française de Normalisation (1996). NF P94-048. Soil: investigation and testing - Determination of the carbonate content - Calcimeter method. Paris: Association Française de Normalisation, 11 p.

Association Française de Normalisation (1997). NF P94-078. Sols : Reconnaissance et essais. Indice CBR après immersion. Indice CBR immédiat. Indice Portant Immédiat - Mesure sur échantillon compacté dans le moule CBR. Paris: Association Française de Normalisation, 12 p.

Association Française de Normalisation (1998). XP-P94-047. Sols : reconnaissance et essais - Détermination de la teneur pondérale en matières organiques d'un matériau. Méthode par calcination. Paris: Association Française de Normalisation, 6 p.

Association Française de Normalisation (2000). NF EN-12879. Caractérisation des boues - Détermination de la perte au feu de la matière sèche. Paris: Association Française de Normalisation, 11 p.

Association Française de Normalisation (2003a). NF EN 13286-41. Unbound and hydraulically bound mixtures. Part 41: Test method for the determination of the compressive strength of hydraulically bound mixtures. Paris: Association Française de Normalisation, 12 p.

Association Francaise de Normalisation (2003b). NF EN 13286-42, Unbound and hydraulically bound mixtures. Part 42: Test method for the determination of the indirect tensile strength of hydraulically bound mixtures. Paris: Association Francaise de Normalisation, 10 p.

Association Française de Normalisation (2012). NF EN-13286-47. Mélanges traités et mélanges non traités aux liants hydrauliques - Partie 47 : Méthode d'essai pour la détermination de l'indice portant Californien (CBR), de l'indice de portance immédiate (IPI) et du gonflement linéaire. Paris: Association Française de Normalisation, 13 p.

Association Française de Normalisation (2013). NF EN-14227-1. Mélanges traités aux liants hydrauliques - Spécifications - Partie 1 : Mélanges granulaires traités au ciment. Paris: Association Française de Normalisation, 32 p.

Association Française de Normalisation (2015). NF P94-100. Sols : reconnaissance et essais - Matériaux traités à la chaux et/ou aux liants hydrauliques - Essais d'évaluation de l'aptitude d'un sol au traitement. Paris: Association Française de Normalisation, 16 p.

ASTM (2006). ASTM Standard D6276-99a. Standard test method for using pH to estimate the soil-lime proportion requirement for soil stabilization. West Conshohocken: American Society for Testing and Materials, 4 p.

Baldovino, J. A., Moreira, E. B., Teixeira, W., Izzo, R. L. S., and Rose, J. L. (2018). Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. Journal of Rock Mechanics and Geotechnical Engineering, Vol. 10, Issue 1, pp. 188–194. DOI: 10.1016/j.jrmge.2017.10.001.

Banoune, B., Melbouci, B., Rosquoët, F., and Langlet, T. (2016). Treatment of river sediments by hydraulic binders for valorization in road construction. Bulletin of Engineering Geology and the Environment, Vol. 75, Issue 4, pp. 1505–1517. DOI: 10.1007/s10064-015-0844-4.

Baston, G. M. N., Clacher, A. P., Heath, T. G., Hunter, F. M. I., Smith, V., and Swanton, S. W. (2012). Calcium silicate hydrate (C-S-H) gel dissolution and pH buffering in a cementitious near field. Mineralogical Magazine, Vol. 76, Issue 8, pp. 3045–3053. DOI: 10.1180/minmag.2012.076.8.20.

Bourabah, M. A., Serbah, B., Abou-Bekr, N., and Taibi, S. (2013). Geotechnical characterization of waste dredged sediments for Algerian dams. In: Manassero, M., Dominijanni, A., Foti, S., and Mussp, G. (eds.). Coupled Phenomena in Environmental Geotechnics: From Theoretican and Experimental Research to Practical Applications. London: CRC Press, pp. 299–305. DOI: 10.1201/b15004-34.

Cabalar, A. F., Karabash, Z., and Mustafa, W. S. (2014). Stabilising a clay using tyre buffings and lime. Road Materials and Pavement Design, Vol. 15, Issue 4, pp. 872–891. DOI: 10.1080/14680629.2014.939697.

Çokça, E. (1993). Prediction of swelling potential of Ankara soils by methylene blue test. Doğa, Turkish Journal of Engineering & Environmental Sciences, Vol. 17, No. 1, pp. 57–63.

Daheur, E. G., Li, Z.-S., Demdoum, A., Taibi, S., Goual, I. (2023). Valorisation of dune sand-tuff for Saharan pavement design. Construction and Building Materials, Vol. 366, 130239. DOI: 10.1016/j.conbuildmat.2022.130239.

Djelloul, R., Mrabent, S. A. B., Hachichi, A., and Fleureau, J.-M. (2017). Effect of cement on the drying–wetting paths and on some engineering properties of a compacted natural clay from Oran, Algeria. Geotechnical and Geological Engineering, Vol. 36, Issue 2, pp. 995–1010. DOI: 10.1007/s10706-017-0370-1.

Eades, J. L. and Grim, R. E. (1966). A quick test to determine lime requirements for lime stabilization. Highway Research Record, Issue 139, pp. 61–72.

Eid, J. (2017). New construction material based on raw earth: cracking mechanisms, corrosion phenomena and physico-chemical interactions. European Journal of Environmental and Civil Engineering, Vol. 22, Issue 12, pp. 1522–1537. DOI: 10.1080/19648189.2017.1373707.

Fleureau, J.-M., Verbrugge, J.-C., Huergo, P. J., Correia, A. G., and Kheirbek-Saoud, S. (2002). Aspects of the behaviour of compacted clayey soils on drying and wetting paths. Canadian Geotechnical Journal, Vol. 39, No. 6, pp. 1341–1357. DOI: 10.1139/t02-100.

Gajewska, B., Kraszewski, C., and Rafalski, L. (2017). Significance of cement-stabilised soil grain size distribution in determining the relationship between strength and resilient modulus. Road Materials and Pavement Design, Vol. 19, Issue 7, pp. 1692–1701. DOI: 10.1080/14680629.2017.1324808.

Hallouz, F., Meddi, M., Mahé, G., Toumi, S., and Rahmani, S. E. A. (2018). Erosion, suspended sediment transport and sedimentation on the Wadi Mina at the Sidi M’Hamed Ben Aouda Dam, Algeria. Water, Vol. 10, Issue 7, 85. DOI: 10.3390/w10070895.

Hamouche, F. and Zentar, R. (2018). Effects of organic matter on mechanical properties of dredged sediments for beneficial use in road construction. Environmental Technology, Vol. 41, Issue 3, pp. 296–308. DOI: 10.1080/09593330.2018.1497711.

Hilt, G. H. and Davidson, D. T. (1960). Lime fixation in clayey soils. Highway Research Board Bulletin, Issue 262, pp. 20–32.

Hussan, A., Levacher, D., Mezazigh, S., and Jardin, L. (2022). Valorization of a highly organic sediment: from conventional binders to a geopolymer approach. Journal of Composites Science, Vol. 6, Issue 5, 147. DOI: 10.3390/jcs6050147.

hydrodragage-c.t.systems (2005). Rapport technique barrage BAKHADA Wilaya De Tiaret Levés Bathymétriques Des Barrages En Exploitation Lots II Et III Echelon Cheliff Et Centre.

Jamsawang, P., Charoensil, S., Namjan, T., Jongpradist, P., and Likitlersuang, S. (2021). Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Materials and Pavement Design, Vol. 22, Issue 11, pp. 2498–2522. DOI: 10.1080/14680629.2020.1772349.

Khattab, S. A., Al-Mukhtar, M., and Fleureau, J.-M. (2007). Long-term stability characteristics of a lime-treated plastic soil. Journal of Materials in Civil Engineering, Vol. 19, No. 4, pp. 358–366. DOI: 10.1061/(ASCE)0899-1561(2007)19:4(358).

Larouci, A., Senhadji, Y., Laoufi, L., and Benazzouk, A. (2021). Dredged dam raw sediments geotechnical characterization for beneficial use in road construction. International Journal of Engineering Research in Africa, Vol. 57, pp. 81–98. DOI: 10.4028/www.scientific.net/JERA.57.81.

LCPC, SETRA (1992). Guide des Terrassements Routiers. Réalisation des remblais et des couches de forme. Paris: LCPC, SETRA, 102 p.

LCPC, SETRA (2000). Traitement des sols à la chaux et/ou aux liants hydrauliques. Application à la réalisation des remblais et des couches de forme. Guide technique. Paris: LCPC, SETRA, 240 p.

Loudini, A., Ibnoussina, M., Witam, O., Limam, A., and Turchanina, O. (2020). Valorisation of dredged marine sediments for use as road material. Case Studies in Construction Materials, Vol. 13, e00455. DOI: 10.1016/j.cscm.2020.e00455.

Makki-Szymkiewicz, L., Hibouche, A., Taibi, S., Herrier, G., Lesueur, D., Fleureau, J.-M. (2015). Evolution of the properties of lime-treated silty soil in a small experimental embankment. Engineering Geology, Vol. 191, pp. 8–22. DOI: 10.1016/j.enggeo.2015.03.008.

Molnár, Z., Pekker, P., Dódony, I., and Pósfai, M. (2021). Clay minerals affect calcium (magnesium) carbonate precipitation and aging. Earth and Planetary Science Letters, Vol. 567, 116971. DOI: 10.1016/j.epsl.2021.116971.

Qureshi, M. U., Alsaidi, M., Aziz, M., Chang, I., Rasool, A. M., and Kazmi, Z. A. (2021). Use of reservoir sediments to improve engineering properties of dune sand in Oman. Applied Sciences, Vol. 11, Issue 4, 1620. DOI: 10.3390/app11041620.

Raouf Achour, Nor-Edine Abriak, Rachid Zentar, Patrice Rivard & Pascal Gregoire , Valorization of unauthorized sea disposal dredged sediments as a road foundation material, Environmental Technology Volume 35, 2014 - Issue 16, https://doi.org/10.1080/09593330. 2014.889758

Seed, H. B., Woodward, R. J., and Lundgren, R. (1962). Prediction of swelling potential for compacted clays. Journal of the Soil Mechanics and Foundations Division, Vol. 88, Issue 3, pp. 53–87. DOI: 10.1061/JSFEAQ.0000431.

Sivapullaiah, P. V., Sridharan, A., and Bhaskar Raju, K. V. (2000). Role of amount and type of clay in the lime stabilization of soils. Ground Improvement, Vol. 4, Issue 1, pp. 37–45. DOI: 10.1680/grim.2000.4.1.37.

Taibi, S., Duperret, A., and Fleureau, J.-M. (2009). The effect of suction on the hydro-mechanical behaviour of chalk rocks. Engineering Geology, Vol. 106, Issues 1–2, pp. 40–50. DOI: 10.1016/j.enggeo.2009.02.012.

Townsend, F. C. (1979). Use of lime in levee restoration. Technical report GL-79-12. Vicksburg: US Army Engineer Waterways Experiment Station, 110 p.

Tribout, С., Husson, B., and Nzihou, A. (2011). Use of treated dredged sediments as road base materials: environmental assessment. Waste and Biomass Valorization, Vol. 2, Issue 3, pp. 337–346. DOI: 10.1007/s12649-011-9068-4.

Venkatarama Reddy, B.V., & Gupta, A. Characteristics of soil-cement blocks using highly sandy soils. Mat. Struct. 38, 651–658 (2005). https://doi.org/10.1007/BF02481596

Wang, D., Abriak, N. E., Zentar, R., and Chen, W. (2013). Effect of lime treatment on geotechnical properties of Dunkirk sediments in France. Road Materials and Pavement Design, Vol. 14, Issue 3, pp. 485–503. DOI: 10.1080/14680629.2012.755935.

Wang, D., Zentar, R., Abriak, N. E., and Xu, W. (2012). Experimental investigation on consistency limits of cement and lime-stabilized marine sediments. Environmental Technology, Vol. 33, Issue 10, pp. 1197–1205. DOI: 10.1080/09593330.2011.633565.

Yukselen, Y. and Kaya, A. (2008). Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Engineering Geology, Vol. 102, Issues 1–2, pp. 38–45. DOI: 10.1016/j.enggeo.2008.07.002.

Zentar, R., Wang, H., and Wang, D. (2021). Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Construction and Building Materials, Vol. 279, 122447. DOI: 10.1016/j.conbuildmat.2021.122447.


Refbacks

  • There are currently no refbacks.




     

ISSN: 2500-0055