STABILITY AND RELIABILITY OF LONG-SPAN BRIDGE STRUCTURES
Abstract
Keywords
Full Text:
PDFReferences
American Society of Civil Engineers (2005). ANSI/ASCE 7-95. Minimum design loads for buildings and other structures. American Society of Civil Engineers, 419 p.
Arena, A., Lacarbonara, W., Valentine, D. T., and Marzocca, P. (2014). Aeroelastic behavior of long-span suspension bridges under arbitrary wind profiles. Journal of Fluids and Structures, Vol. 50, pp. 105–119. DOI: 10.1016/j.jfluidstructs.2014.06.018.
Churin, P. and Poddaeva, O. I. (2014). Aerodynamic testing of bridge structures. Applied Mechanics and Materials, Vols. 477–478, pp. 817–821. DOI: 10.4028/www.scientific.net/AMM.477-478.817.
Highways Agency (2001). DMRB. Vol. 1. Highway structures, approval procedures and general design. Section 3. General design. Part 3. BD 49/01. Design rules for aerodynamic effects on bridges. London: Highways Agency.
Kazakevich, M. I. (2015). Wind safety of the structures. Theory and practice. Moscow: Institut Giprostroymost, 287 p.
Kazakevich, M. I. and Zakora, A. L. (1983). Oscillation damping in bridge structures. Moscow: Transport, 134 p.
Kazakevitch, M. I. (2020). The fundamentals of the structure calculations on the wind effects. 2nd edition. Moscow: MISI – MGSU Publishing House, 190 p.
Larsen, A. (2000). Aerodynamics of the Tacoma Narrows Bridge - 60 years later. Structural Engineering International, Vol. 10, Issue 4, pp. 243–248. DOI: 10.2749/101686600780481356.
Malomo, D., Scattarreggia, N., Orgnoni, A., Pinho, R., Moratti, M., and Calvi, G. M. (2020). Numerical study on the collapse of the Morandi bridge. Journal of Performance of Constructed Facilities, Vol. 34, Issue 4, 04020044. DOI: 10.1061/(ASCE)CF.1943-5509.0001428.
National Research Council of Italy. Advisory Committee on Technical Recommendations for Construction (2010). CNR-DT 207/2008 Guide for the assessment of wind actions and effects on structures. Roma: CNR, 331 p.
Ovchinnikov, I. I., Ovchinnikov I. G., and Filippova, V. O. (2015). How unique oscillations the Volgograd Bridge? Technical Regulation in Transport Construction, No. 6 (14), pp. 81–91.
Poddaeva, O. and Churin, P. (2021). Aerodynamic stability of bridges with various levels of structural damping. Architecture and Engineering, Vol. 6, No. 4, pp. 54–62. DOI: 10.23968/2500-0055-2021-6-4-54-62.
Poddaeva, O., Churin, P., Fedosova, A., and Truhanov, S. (2018). Investigation of the stability of a two-span bridge with the use of a high-precision laser displacement sensors. IOP Conference Series: Materials Science and Engineering, Vol. 317, 012020. DOI: 10.1088/1757-899X/317/1/012020.
Poddaeva, O. and Fedosova, A. (2021). Damping capacity of materials and its effect on the dynamic behavior of structures. Review. Energy Reports, Vol. 7, Suppl. 5, pp. 299–307. DOI: 10.1016/j.egyr.2021.07.119.
Poddaeva, O. I., Fedosova, A. N., and Churin, P. S. (2020). The influence of the structural vibrations’ logarithmic decrement on its stability in the event of vortex excitation. IOP Conference Series: Materials Science and Engineering, Vol. 913, 042069. DOI: 10.1088/1757-899X/913/4/042069.
Poddaeva, O., Fedosova, A., and Gribach, J. (2019). The study of wind effects on the bridge constructions. E3S Web of Conferences, Vol. 97, 03030. DOI: 10.1051/e3sconf/20199703030.
Salenko, S. D. (2005). Unsteady aerodynamics of high-drag multi-beam structures. DSc Thesis in Engineering. Novosibirsk: Novosibirsk State Technical University.
Shu, C. S. (2013). Wind tunnel experimental research on flutter stability of Liujiaxia Bridge. Applied Mechanics and Materials, Vols. 361–363, pp. 1105–1109. DOI: 10.4028/www.scientific.net/AMM.361-363.1105.
Zhang, X., Xiang, H., and Sun, B. (2002). Nonlinear aerostatic and aerodynamic analysis of long-span suspension bridges considering wind-structure interactions. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, Issue 9, pp. 1065–1080. DOI: 10.1016/S0167-6105(02)00251-9.
DOI: https://doi.org/10.23968/2500-0055-2022-7-3-65-75
Refbacks
- There are currently no refbacks.