EVALUATING THE APPLICABILITY OF BERNOULLI’S HYPOTHESIS IN BEAM ANALYSIS
Abstract
Keywords
Full Text:
PDFReferences
ANSYS (2009). Verification Manual for the Mechanical APDL Application. Canonsburg, PA: ANSYS, Inc., 1924 p.
Cowper, G. R. (1966). The shear coefficient in Timoshenko’s beam theory. Journal of Applied Mechanics, Vol. 33, Issue 2, pp. 335–340. DOI: 10.1115/1.3625046.
Donnell, L. H. (1982). Beams, plates and shells. Moscow: Nauka, 568 p.
Franco-Villafañe, J. A. and Méndez-Sánchez, R. A. (2016). On the accuracy of the Timoshenko beam theory above the critical frequency: best shear coefficient. Journal of Mechanics, Vol. 32, Issue 5, pp. 515–518. DOI: 10.1017/jmech.2015.104.
Goldenweiser, A. L. (1976). Theory of thin elastic shells. 2nd edition. Moscow: Nauka, 512 p.
Hutchinson, J. R. (1981). Transverse vibration of beams, exact versus approximate solutions. Journal of Applied Mechanics, Vol. 48, Issue 4, pp. 923–928. DOI: 10.1115/1.3157757.
Karpov, V., Kobelev, E., and Panin, A. (2021). Application of analytical solutions for bending beams in the method of movement. Architecture and Engineering, Vol. 6, No. 4, рр. 42–53. DOI: 10.23968/2500-0055-2021-6-4-42-53.
Lalin, V. V. and Beliaev, M. O. (2015). Bending of geometrically nonlinear cantilever beam. Results obtained by Cosserat – Timoshenko and Kirchhoff’s rod theories. Magazine of Civil Engineering, No. 1, pp. 39–55. DOI: 10.5862/MCE.53.5.
Maslennikov, A. M. (2009). Construction mechanics of rod systems: introductory course. 2nd edition. Saint Petersburg: Prospekt Nauki, 240 p.
Méndez-Sáchez, R. A., Morales, A., and Flores, J. (2005). Experimental check on the accuracy of Timoshenko’s beam theory. Journal of Sound and Vibration, Vol. 279, Issues 1–2, pp. 508–512. DOI: 10.1016/j.jsv.2004.01.050 .
Nazarov, S. A. (2002). Asymptotic analysis of thin plates and rods. Novosibirsk: Nauchnaya Kniga, 408 p.
Pavlenko, I. V. and Vereshchaka, S. M. (2002). Refined composite beam analysis using the Timoshenko model. Scientific and Technical Conference of Lecturers, Employees, and Students of the Mechanics and Mathematics Department. Sumy: Publishing House of Sumy State University, pp. 23–24.
Rossikhin, Yu. A. and Shitikova, M. V. (2010). Analytical review of the theories of Timoshenko type for thin-web beams of open profile. Industrial and Civil Engineering, No. 9, pp. 15–19.
Simulia (2012). Abaqus 6.12. Benchmarks Manual. Providence, RI: Dassault Systèmes Simulia Corp., 1738 p.
SOFiSTiK AG (2014). Verification Manual. Oberschleissheim: SOFiSTiK AG, 223 p.
Stephen, N. G. (1980). Timoshenko’s shear coefficient from a beam subjected to gravity loading. Journal of Applied Mechanics, Vol. 47, Issue 1, pp. 121–127. DOI: 10.1115/1.3153589.
Timoshenko, S. P. (1945). Strength of materials. Part 1. Elementary theory and problems. Moscow, Leningrad; Gostekhizdat, 320 p.
Timoshenko, S. P. and Gere, J. M. (1976). Mechanics of materials. Moscow: Mir, 669 p.
Timoshenko, S. P. and Woinowsky-Krieger, S. (1963). Plates and shells. Moscow: Fizmatgiz, 636 p.
Tovstik, P. E. (2007). On the asymptotic nature of approximate models of beams, plates, and shells. Vestnik St. Petersburg University, Mathematics, Vol. 40, No. 3, pp. 188–192.
Yeliseyeva, O. P., Shadt, K. V., Timofeyeva, N. S., and Kononova, Ye. (2011). Application of the Timoshenko model in beam deflection analysis with account for bending and shear. Challenging Issues of Aviation and Cosmonautics. Engineering Sciences, pp. 91–93.
Zveryayev, Ye. M. (2003). Analysis of the hypotheses used when constructing the theory of beams and plates. Journal of Applied Mathematics and Mechanics, Vol. 67, Issue 3, pp. 425–434. DOI: 10.1016/S0021-8928(03)90026-8.
Zveryayev, Y. M. and Makarov, G. I. (2008). A general method for constructing Timoshenko-type theories. Journal of Applied Mathematics and Mechanics, Vol. 72, Issue 2, pp. 197–207. DOI: 10.1016/j.jappmathmech.2008.04.004.
DOI: https://doi.org/10.23968/2500-0055-2022-7-3-37-43
Refbacks
- There are currently no refbacks.