WHITE CEMENT-BASED BINDER FOR SELF-CLEANING FINE-GRAINED CONCRETE
Abstract
Keywords
Full Text:
PDFReferences
Abouelnour, M. A., Abd El-Aziz, M. A., Osman, K. M., Fathy, I. N., Tayeh, B. A., and Elfakharany, M. E. (2024). Recycling of marble and granite waste in concrete by incorporating nano alumina. Construction and Building Materials, Vol. 411, 134456. DOI: 10.1016/j.conbuildmat.2023.134456.
Ayubov, N. A., Fomina, E. V., Ageeva, M. S., Antoshina, N. V., Sabitov, L. S., and Sibgatullin, E. S. (2024). The use of expanded perlite waste in the composition of a composite binder. Engineering Journal of Don, No. 8 (116), pp. 577–590.
Balykov, А. S., Nizina, Т. А., Korovkin, D. I., Volodin, V. V., Smakaev, R. M., and Gajiyeva, U. M. (2018). Study of reotechnological properties of cement and mineral suspensions for self-compacting concrete mixtures development. Ogarev-Online, Vol. 6, No. 9, 3.
Bazhenova, O. Yu. and Bazhenova, S. I. (2016). Features of structure of decorative concrete. Advances in Modern Science, Vol. 3, No. 6, pp. 21–23.
Beregovoy, V. A., Snadin, E. V., Inozemtsev, A. S., and Pilipenko, A. S. (2023). High-performance concretes for machine building with nano and micro-scale raw materials. Nanotechnologies in Construction, Vol. 15, No. 3, pp. 200–210. DOI: 10.15828/2075-8545-2023-15-3-200-210.
Berov, Ya. I., Petrov, S. P., Nasedkin, V. V., and Dudko, P. G. (2006). Some aspects of perlite concrete use in construction. Construction Materials, No. 6, pp. 82–83.
Cherkasov, V. D., Buzulukov, V. I., Tarakanov, O. V., and Yemelyanov, A. I. (2015). Structure formation of cement composites with addition of modified diatomite. Construction Materials, No. 11, pp. 75–77.
Grzeszczyk, S. and Janus, G. (2021). Lightweight reactive powder concrete containing expanded perlite. Materials, Vol. 14, Issue 12, 3341. DOI: 10.3390/ma14123341.
Kalashnikov, V. I. (2011). Terminology of the science of new generation concrete. Construction Materials, No. 3, pp. 103–106.
Kalashnikov, V. I., Tarakanov, O. V., Volodin, V. M., Erofeeva, I. V., and Abramov, D. A. (2023). Concretes of transitional and new generations. Status and prospects. Concrete Technologies, No. 2 (187), pp. 33–38.
Kharitonov, A. M., Sidorova, A. S., and Andreev, D. M. (2023). Expanded perlite additive for modification of properties of cement composites. Cement and its Applications, No. 4, pp. 72–75.
Kopanitsa, N. O., Demyanenko, O. V., and Kulikova, A. A. (2023). Complex additives based on secondary resources for modification of cement composites. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, Vol. 334, No. 1, pp. 136–144.
Kotwica, Ł., Pichór, W., Kapeluszna, E., and Różycka, A. (2017). Utilization of waste expanded perlite as new effective supplementary cementitious material. Journal of Cleaner Production, Vol. 140, Part 3, pр. 1344–1352. DOI: 10.1016/j.jclepro.2016.10.018.
Kulikova, A. A., Dem’yanenko, O. V., Sorokina, E. A., and Kopanitsa, N. O. (2019). Complex modifying additives for cement construction mixes. Journal of Construction and Architecture, Vol. 21, No. 6, pp. 140–148. DOI: 10.31675/1607-1859-2019-21-6-140-148.
Kuznetsova, T. V., Nefed’ev, A. P., and Kossov, D. Yu. (2015). Kinetics of hydration and properties of cement with metakaolin addition. Construction Materials, No. 7, pp. 3–4.
Ledyaykina, O. V. and Ledyaykin, N. V. (2024). Study of the influence of modified additives on the properties of concrete. Bulletin of BSTU named after V. G. Shukhov, No. 4, pp. 8–15. DOI: 10.34031/2071-7318-2024-9-4-8-15.
Li, L., Sun, W., Feng, Z., Li, Y., Feng, T., and Liu, Z. (2024). Hydration kinetics and apparent activation energy of cement pastes containing high silica fume content at lower curing temperature. Construction and Building Materials, Vol. 435, 136881. DOI: 10.1016/j.conbuildmat.2024.136881.
Loganina, V. I. and Fokin, G. A. (2019). Ensuring the quality of the external type of varnish and paint coatings of cement concrete. Regional Architecture and Engineering, No. 3 (40), pp. 68–72.
Luo, H., Aguiar, J., Wan, X., Wang, Y., Cunha, S., and Jia, Z. (2024). Application of aggregates from construction and demolition wastes in concrete: review. Sustainability, Vol. 16, Issue 10, 4277. DOI: 10.3390/su16104277.
Martins, J. R., Rocha, J. C., Hotza, D., and Senff, L. (2024). Rheological and stability analysis of cement pastes incorporating silica-based wastes. Particuology, Vol. 89, pp. 144–152. DOI: 10.1016/j.partic.2023.11.005.
Miryuk, O. A. and Zagorodnyuk, L. H. (2022). Granular materials based on expanded sands and their production waste. Complex Use of Mineral Resources, Vol. 321, No. 2, pp. 14-21. DOI: 10.31643/2022/6445.13.
Moroz, M. N., Kalashnikov, V. I., and Suzdalsev, O. V. (2016). Classification criteria for the formation of the surface of architectural and decorative concretes. Modern Scientific Researches and Innovations, No. 10 (66), pp. 114–117.
Mousavinejad, S. H. G. and Pourjamali, M. (2024). Determining the mechanical behavior of thin-walled cylindrical shells of cement composite containing graphene oxide and glass fibers with the help of fuzzy logic model and artificial neural network. Innovative Infrastructure Solutions, Vol. 9, Issue 8, 332. DOI: 10.1007/s41062-024-01644-w.
Natsievsky, S. Yu. (2006). Perlite in modern concrete, dry building mixes, and non-combustible heat insulation products. Construction Materials, No. 6, pp. 78–81.
Pogorelov, V. A. (2010). Influence of concrete mixture grading on the structural transformation of concrete strength. Vestnik MGSU, No. 1, pp. 200–206.
Shirina, N. V. and Zagorodnyuk, L. H. (2007). Perlite dust — an effective filler for dry building mixes. Construction Materials, No. 5, pp. 44–45.
Sidorova, A. S. (2024). Analysis of perlite additive as internal cure agent in cement concrete system. Bulletin of BSTU named after V. G. Shukhov, No. 7, pp. 25–34. DOI: 10.34031/2071-7318-2024-9-7-25-34.
Stenechkina, K. S. (2023). The use of decorative concrete for finishing buildings and structure. Engineering Journal of Don, No. 3 (99), pp. 418–428.
Stoyanov, V., Petkova, V., Mihaylova, K., and Shopska, M. (2024). A study of the influence of thermoactivated natural zeolite on the hydration of white cement mortars. Materials, Vol. 17, Issue 19, 4798. DOI: 10.3390/ma17194798.
Tarasov, V. N., Gusev, B. V., Petrunin, S. Yu., Korotkova, N. P., and Garnovesov, A. P. (2018). Performance assessment of polycarboxylate superplasticizers for concrete manufacturing. Journal of Science and Education of North-West Russia, Vol. 4, No. 1, pp. 29–40.
Taylor, H. F. W. (1996). Cement Chemistry. Moscow: Mir, 560 p.
Tolstoy, A. D., Lesovik, V. S., and Milkina, A. S. (2018). Improving new generation concretes (NGCs) by introducing technogenic materials. IOP Conference Series: Materials Science and Engineering, Vol. 463, Issue 2, 022095. DOI: 10.1088/1757-899X/463/2/022095.
Voronov, V. V. and Glagolev, E. S. (2020). Polymineral composite binders for foam concrete: features of hydration and hardening. The Russian Automobile and Highway Industry Journal, Vol. 17, No. 1 (71), pp. 122–135. DOI: 10.26518/2071-7296-2020-17-1-122-135.
Xu, K., Yang, J., He, H., Wei, J., and Zhu, Y. (2025). Influences of additives on the rheological properties of cement composites: a review of material impacts. Materials, Vol. 18, Issue 8, 1753. DOI: 10.3390/ma18081753.
Zhao, D., Williams, J. M., Li, Z., Park, A. H. A., Radlińska, A., Hou, P., and Kawashima, S. (2023). Hydration of cement pastes with calcium carbonate polymorphs. Cement and Concrete Research, Vol. 173, 107270. DOI: 10.1016/j.cemconres.2023.107270.
Refbacks
- There are currently no refbacks.