DAMPING SEISMIC VIBRATIONS IN HIGH-RISE BUILDINGS USING CONTROLLED REACTIVE DAMPERS
Abstract
Keywords
Full Text:
PDFReferences
Abramyan, S. G., Burlachenko, O. V., Oganesyan, O. V., Burlachenko, А. O., Archakov, I. B., and Pleshakov, V. V. (2022). Technological solutions ensuring reliable operation of steel vertical reservoirs in seismic areas. Construction Materials and Products, Vol. 5, No. 5, pp. 5–16. DOI: 10.58224/2618-7183-2022-5-5-5-16.
Adam, C., Di Matteo, A., Furtmüller, T., and Pirrotta, A. (2017). Earthquake excited base-isolated structures protected by tuned liquid column dampers: design approach and experimental verification. Procedia Engineering, Vol. 199, pp. 1574–1579. DOI: 10.1016/j.proeng.2017.09.060.
Altay, O., Nolteernsting, F., Stemmler, S., Abel, D., and Klinkel, S. (2017). Investigations on the performance of a novel semiactive tuned liquid column damper. Procedia Engineering, Vol. 199, pp. 1580–1585. DOI: 10.1016/j.proeng.2017.09.061.
Amanollah, F., Ostrovskaya, N., Rutman, R. (2023). Structural and parametric analysis of lead rubber bearings and effect of their characteristics on the response spectrum analysis. Architecture and Engineering, Vol. 8, No. 1, pp. 37–43. DOI: 10.23968/2500-0055-2023-8-1-37-43.
Burtseva, O. A., Tkachev, A. N., and Chipko, S. A. (2015). Roller seismic impact oscillation neutralization system for highrise buildings. Procedia Engineering, Vol. 129, pp. 259–265. DOI: 10.1016/j.proeng.2015.12.046.
Etedali, S. and Rakhshani, H. (2018). Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations. Alexandria Engineering Journal, Vol. 57, Issue 4, pp. 3205–3218. DOI: 10.1016/j.aej.2018.01.009.
Lasowicz, N. and Jankowski, R. (2017). Investigation of behaviour of metal structures with polymer dampers under dynamic loads. Procedia Engineering, Vol. 199, pp. 2832–2837. DOI: 10.1016/j.proeng.2017.09.540.
Marano, G. C., Greco, R., Trentadue, F., and Chiaia, B. (2007). Constrained reliability-based optimization of linear tuned mass dampers for seismic control. International Journal of Solids and Structures, Vol. 44, Issues 22–23, pp. 7370–7388. DOI: 10.1016/j.ijsolstr.2007.04.012.
Owji, H. R., Shirazi, A. H. N., and Hooshmand Sarvestani, H. (2011). A comparison between a new semi-active tuned mass damper and an active tuned mass damper. Procedia Engineering, Vol. 14, pp. 2779–2787. DOI: 10.1016/j.proeng.2011.07.350.
Seong, J. Y. and Min, K. W. (2011). An analytical approach for design of a structure equipped with friction dampers. Procedia Engineering, Vol. 14, pp. 1245–1251. DOI: 10.1016/j.proeng.2011.07.156.
Shein, A. I. and Chumanov, A. V. (2021). Belt vibration damping system for closed-type domes. In: Klyuev, S. V. and Klyuev, A. V. (eds.). Environmental and Construction Engineering: Reality and the Future. Lecture Notes in Civil Engineering, Vol. 160. Cham: Springer, pp. 245–252. DOI: 10.1007/978-3-030-75182-1_33.
Shein, A., Chumanov, A., Malkov, A., and Laskov, N. (2022). New vibration dampers for buildings and structures. AIP Conference Proceedings, Vol. 2503, Issue 1, 050065. DOI: 10.1063/5.0100292.
Shein, A. I. and Shmelev, D. A. (2014). Performance evaluation of active liquid vibration damper for high-rise buildings at the non-stationary impacts. Structural Mechanics and Analysis of Constructions, No. 1 (252), pp. 59–63.
Shein, A. I. and Zaytsev, M. B. (2023). Mathematical modeling of the operation of a reactive vibration dampener of a cooling tower. Modeling and Mechanics of Structures, No. 17, pp. 1–10.
Tamrazyan, A. and Chernik, V. (2021). Equivalent viscous damping ratio for a RC column under seismic load after a fire. IOP Conference Series: Materials Science and Engineering, Vol. 1030, 012095. DOI: 10.1088/1757-99X/1030/1/012095.
Tamrazyan, A. and Matseevich, T. (2024). Seismic resistance of reinforced concrete building frames based on interval assessment of the coefficient of permissible damage. Buildings, Vol. 14, Issue 12, 3776. DOI: 10.3390/buildings14123776.
Refbacks
- There are currently no refbacks.