INVESTIGATING WINDOW DESIGN IMPACT ON OTTV THROUGH BIM MODELING IN WARM-HUMID CITIES
Abstract
Keywords
Full Text:
PDFReferences
Abass, F., Ismail, L. H., Wahab, I. A., and Elgadi, A. A. (2020). Development of a model for OTTV and RTTV based on BIMVPL to optimize the envelope thermal performance. IOP Conference Series: Materials Science and Engineering, Vol. 713, 012009. DOI: 10.1088/1757-899X/713/1/012009.
Albatayneh, A. (2021). Sensitivity analysis optimisation of building envelope parameters in a sub-humid Mediterranean climate zone. Energy Exploration & Exploitation, Vol. 39, Issue 6, pp. 2080–2102. DOI: 10.1177/01445987211020432.
Al-Homoud, M. S. (2005). A systematic approach for the thermal design optimization of building envelopes. Journal of Building Physics, Vol. 29, Issue 2, pp. 95–119. DOI: 10.1177/1744259105056267.
Bahdad, A. A. S., Fadzil, S. F. S., and Onubi, H. O. (2021). Assessment of the thermal performance of vertical green walls using overall thermal transfer value based BIM simulation method: case study of residential buildings in sub-tropics. Journal of Daylighting, Vol. 8, Issue 2, pp. 294–312. DOI: 10.15627/JD.2021.23.
BSN (2020). SNI 6389:2020. Standar Nasional Indonesia Konservasi energi selubung bangunan pada bangunan gedung. [online] Available at: www.bsn.go.id [Date accessed: May 3rd 2024].
Chow, W. K. and Chan, K. T. (1995). Parameterization study of the overall thermal-transfer value equation for buildings. Applied Energy, Vol. 50, Issue 3, pp. 247–268. DOI: 10.1016/0306-2619(94)00023-8.
Eid, A. S., Aboulnaga, M. M., and Mahmoud, A. H. (2022). VPL-based code compliance checking for building envelope design using OTTV calculation. IOP Conference Series: Earth and Environmental Science, Vol. 1056, 012033. DOI: 10.1088/1755-1315/1056/1/012033.
Elhadad, S. and Orban, Z. (2021). A sensitivity analysis for thermal performance of building envelope design parameters. Sustainability, Vol. 13, Issue 24, 14018. DOI: 10.3390/su132414018.
Gondal, I. A., Syed Athar, M., and Khurram, M. (2019). Role of passive design and alternative energy in building energy optimization. Indoor and Built Environment, Vol. 30, Issue 2, pp. 278–289. DOI: 10.1177/1420326X19887486.
Habibi, S. (2019). Improving building envelope performance with respect to thermal, sound insulation, and lighting: a case study. Building Acoustics, Vol. 26, Issue 4, pp. 243–262. DOI: 10.1177/1351010X19877280.
Imran, M. (2019). Analisa hemat energi terhadap gedung GPIB Kelapa Gading melalui pendekatan OTTV. Jurnal Linears, Vol. 2, No. 2, pp. 79–91. DOI: 10.26618/j-linears.v2i2.3127.
Kusumawati, L., Setyowati, E., and Purnomo, A. B. (2021). Practical-empirical modeling on envelope design towards sustainability in tropical architecture. Sustainability, Vol. 13, Issue 5, 2959. DOI: 10.3390/su13052959.
Lim, Y.-W., Seghier, T. E., Harun, M. F., Ahmad, M. H., Samah, A. A., and Majid, H. A. (2019). Computational BIM for building envelope sustainability optimization. MATEC Web of Conferences, Vol. 278, 04001. DOI: 10.1051/matecconf/201927804001.
Mushtaha, E., Salameh, T., Kharrufa, S., Mori, T., Aldawoud, A., Hamad, R., and Nemer, T. (2021). The impact of passive design strategies on cooling loads of buildings in temperate climate. Case Studies in Thermal Engineering, Vol. 28, 101588. DOI: 10.1016/j.csite.2021.101588.
Nasrullah, N., Hamdy, M. A., Mustamin, M. T., and Faharuddin, A. (2024). Energy management model for air conditioning energy conservation in hotel buildings of Makassar City, Indonesia. Civil Engineering and Architecture, Vol. 12, No. 4, pp. 2755–2771. DOI: 10.13189/cea.2024.120419.
Natephra, W., Yabuki, N., and Fukuda, T. (2018). Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation. Building and Environment, Vol. 136, pp. 128–145. DOI: 10.1016/j.buildenv.2018.03.032.
Octarino, C. N. and Feriadi, H. (2021). Evaluasi kinerja selubung bangunan gedung agape universitas kristen duta wacana yogyakarta. Langkau Betang: Jurnal Arsitektur, Vol. 8, No. 2, pp. 86–97. DOI: 10.26418/lantang.v8i2.45436.
Pang, Z., O’Neill, Z., Li, Y., and Niu, F. (2020). The role of sensitivity analysis in the building performance analysis: a critical review. Energy and Buildings, Vol. 209, 109659. DOI: 10.1016/j.enbuild.2019.109659.
Pathirana, S., Rodrigo, A., and Halwatura, R. (2019). Effect of building shape, orientation, window to wall ratios and zones on energy efficiency and thermal comfort of naturally ventilated houses in tropical climate. International Journal of Energy and Environmental Engineering, Vol. 10, Issue 1, pp. 107–120. DOI: 10.1007/s40095-018-0295-3.
PT Asahimas Flat Glass Tbk. (2022). Architectural glass. [online] Available at: https://luminoindonesia.com/wp-content/uploads/2022/11/katalog-asahi.pdf [Date accessed November 5, 2024].
Purwanto, L. M. F. and Tichelmann, K. (2021). Effects of heat transfer through the walls of a catholic church in Semarang Indonesia simulated with Psi-Therm software and OTTV. Civil Engineering and Architecture, Vol. 9, No. 3, pp. 799–806. DOI: 10.13189/cea.2021.090321.
Rahmanda, A. P. and Suriansyah, Y. (2020). Upaya penurunan nilai ottv untuk penghematan energi pada hotel emersia lampung sesuai kriteria greenship. Riset Arsitektur (RISA), Vol. 5, No. 0), pp. 18–35, DOI: 10.26593/risa.v5i01.4415.18-35.
Sani, A. A., Matondang, A. E., Kurniawan, G. K., and Mardiyanto, A. (2019). Kinerja termal selubung gedung kuliah kota bandar lampung ITERA. Jurnal Arsitektur ARCADE, Vol. 3, No. 3, pp. 267–273. DOI: 10.31848/arcade.v3i3.303.
Sari, L. H. and Rauzi, E. N. (2021). An evaluation of shading device in tropics utilising the sun-path diagram. ARTEKS: Jurnal Teknik Arsitektur, Vol. 6, No. 3, pp. 373–382. DOI: 10.30822/arteks.v6i3.877.
Sayadi, S., Hayati, A., and Salmanzadeh, M. (2021). Optimization of window-to-wall ratio for buildings located in different climates: an IDA-indoor climate and energy simulation study. Energies, Vol. 14, Issue 7, 1974. DOI: 10.3390/en14071974.
Seghier, T. E., Lim, Y. W., Ahmad, M. H., and Samuel, W. O. (2017). Building envelope thermal performance assessment using visual programming and BIM, based on ETTV requirement of Green Mark and GreenRE. International Journal of Built Environment and Sustainability, Vol. 4, Issue 3, pp. 227–235. DOI: 10.11113/ijbes.v4.n3.216.
Seghier, T. E., Lim, Y.-W., Harun, M. F., Ahmad, M. H., Samah, A. A., and Majid, H. A. (2022). BIM-based retrofit method (RBIM) for building envelope thermal performance optimization. Energy and Buildings, Vol. 256, 111693. DOI: 10.1016/j.enbuild.2021.111693.
Syafutri, R. F., Suryabrata, J. A., and Rahmawati, Y. (2023a). Analisis sensitivitas elemen dinding selubung bangunan terhadap OTTV dengan kalkulator berbasis kerangka kerja BIM-VPL. MSc Thesis in Architecture.
Syafutri, R. F., Suryabrata, J.A., and Rahmawati, Y. (2023b). Developing the building envelope thermal transfer value calculator based on BIM-VPL framework. International Journal of Application on Sciences, Technology and Engineering, Vol. 1, Issue 1, pp. 343–349. DOI: 10.24912/ijaste.v1.i1.343-349.
Tantisevi, K. and Sornsuriya, K. (2010). Building information model for evaluating the building energy performance: a case study. In: Tizani, W. (ed.). Computing in Civil and Building Engineering, Proceedings of the International Conference, June 30 – July 2, Nottingham, UK. Nottingham: Nottingham University Press, 84.
Tong, S., Wen, J., Wong, N. H., and Tan, E. (2021). Impact of façade design on indoor air temperatures and cooling loads in residential buildings in the tropical climate. Energy and Buildings, Vol. 243, 110972. DOI: 10.1016/j.enbuild.2021.110972.
Tukiainen, M. and Gaisma.com (2024). Indonesia - sunrise, sunset, dawn and dusk times. [online]. Available at: https://www.gaisma.com/en/dir/id-country.html [Date accessed June 6, 2024].
Widhayaka, S. A. and Rilatupa, J. E. D. (2021). Optimalisasi kinerja termal selubung bangunan unit hunian di rusunawa cibesut jakarta timur. MODUL, Vol. 21, No. 1, pp. 43–50. DOI: 10.14710/mdl.21.1.2021.43-50.
Refbacks
- There are currently no refbacks.