NATURAL VIBRATIONS OF A STEEL-CONCRETE CYLINDRICAL SHELL IN A SOIL MEDIUM
Abstract
Introduction. Cylindrical shells embedded in the soil medium are generally used in pipeline transportation. To prevent damage to pipelines by concrete weights when the structure surfaces in a waterlogged environment, it is proposed to use concrete pipe products, with the inner part made of steel and the outer part formed by a concrete layer 30–50 mm thick. In this case, the designer faces the question of which calculation method to use for determining the natural vibration frequencies. Purpose of the study: To compare the values of natural vibration frequencies of a large-diameter steel-concrete gas pipeline in the ground, obtained using an analytical dependency, with the values determined in the Lira software package. Methods: The first method of determining frequency is based on an analytical expression obtained using the semi-momentless theory of cylindrical shells. The second method is based on the finite element method with the construction of a computational model in the Lira-SAPR software. Modeling of steel and concrete layers of the composite shell in the software package was carried out using 4-node plates, which are combined into a common structure with the help of perfectly rigid bodies (PRB). In the first case, the calculation for the soil medium surrounding the shell was carried out by creating a mass (measuring 5.3×5.3 meters) using volumetric bodies, while in the second case, it was done by setting a coefficient of subgrade reaction for the concrete layer. Results: We established that the second method of setting soil conditions allows a 5–6 times reduction in data entry time while achieving the same results. The discrepancy in the natural vibration frequencies for the research object, determined by the analytical method and the finite element method (FEM), does not exceed 10%, and for the first three frequencies of the spectrum, it is no more than 6%. Therefore, all methods are applicable. However, the use of an analytical expression allows calculations to be performed 10 times faster and does not require specialized software, making it more advantageous in the design based on frequency characteristics.
Keywords
Full Text:
PDFReferences
Alshabatat, N. and Zannon, M. (2021). Natural frequencies analysis of functionally graded circular cylindrical shells. Applied and Computational Mechanics, Vol. 15, No. 2, pp. 105–122. DOI: 10.24132/acm.2021.654.
Baghlani, A., Khayat, M., and Dehghan, S. M. (2020). Free vibration analysis of FGM cylindrical shells surrounded by Pasternak elastic foundation in thermal environment considering fluid-structure interaction. Applied Mathematical Modelling, Vol. 78, pp. 550–575. DOI: 10.1016/j.apm.2019.10.023.
Bochkarev, S. A. (2022). Natural vibrations of a cylindrical shell with fluid partly resting on a two-parameter elastic foundation. International Journal of Structural Stability and Dynamics, Vol. 22, No. 06, 2250071. DOI: 10.1142/S0219455422500717.
Dashevskij, M. A., Mitroshin, V. A., Mondrus, V. L., and Sizov, D. K. (2021). Impact of metro induced ground-borne vibration on urban development. Magazine of Civil Engineering, Issue 6 (106), 10602. DOI: 10.34910/MCE.106.2.
Dyachenko, I. A. Mironov, A. A., and Sverdlik, Yu. M. (2019). Comparative analysis of theories and finite element models for calculating free vibrations of cylindrical shells. Transport Systems, Issue 3 (13), pp. 55–63. DOI: 10.46960/62045_2019_3_55.
Ebrahimi, Z. (2022). Free vibration and stability analysis of a functionally graded cylindrical shell embedded in piezoelectric layers conveying fluid flow. Journal of Vibration and Control, Vol. 29, Issue 11–12, pp. 2515–2527. DOI: 10.1177/10775463221081184.
Farshidianfar, A. and Oliazadeh, P. (2012). Free vibration analysis of circular cylindrical shells: comparison of different shell theories. International Journal of Mechanics and Applications, No. 2 (5), pp. 74–80. DOI: 10.5923/j.mechanics.20120205.04.
Jain, A. K., Rawat, A., and Kushwah, S. S. (2016). Free vibration analysis of circular cylindrical shells. American Journal of Engineering Research (AJER), Vol. 5, Issue 10, pp. 373–380.
Kumar, A., Das, S. L., and Wahi, P. (2015). Instabilities of thin circular cylindrical shells under radial loading. International Journal of Mechanical Sciences, Vol. 104, pp. 174–189. DOI: 10.1016/j.ijmecsci.2015.10.003.
Kumar, A., Das, S. L., and Wahi, P. (2017). Effect of radial loads on the natural frequencies of thin-walled circular cylindrical shells. International Journal of Mechanical Sciences, Vol. 122, pp. 37–52. DOI: 10.1016/j.ijmecsci.2016.12.024.
Lee, H. and Kwak, M. K. (2015). Free vibration analysis of a circular cylindrical shell using the Rayleigh–Ritz method and comparison of different shell theories. Journal of Sound and Vibration, Vol. 353, pp. 344–377. DOI: 10.1016/j.jsv.2015.05.028.
Leontiev, Y. V. and Travush, V. I. (2022). Fluctuations of pipelines of gas-containing liquids under changing bearing conditions. Structural Mechanics of Engineering Constructions and Buildings, Vol. 18, No. 6, pp. 544–551. DOI: 10.22363/1815-5235-2022-18-6-544-551.
Oliazadeh, P., Farshidianfar, M. H., and Farshidianfar, A. (2013). Exact analysis of resonance frequency and mode shapes of isotropic and laminated composite cylindrical shells. Part I: Analytical studies. Journal of Mechanical Science and Technology, Vol. 27, Issue 12, pp. 3635–3643. DOI: 10.1007/s12206-013-0905-1.
Piacsek, A. A. and Harris, N. (2019). Resonance frequencies of a spherical aluminum shell subject to prestress from internal fluid pressure. The Journal of the Acoustical Society of America, Vol. 145, Issue 3 (Suppl.), 1881. DOI: 10.1121/1.5101813.
Shahbaztabar, A., Izadi, A., Sadeghian, M., and Kazemi M. (2019). Free vibration analysis of FGM circular cylindrical shells resting on the Pasternak foundation and partially in contact with stationary fluid. Applied Acoustics, Vol. 153, pp. 87–101. DOI: 10.1016/j.apacoust.2019.04.012.
Shakiryanov, M. M. and Akhmedyanov, A. V. (2020). Nonlinear oscillations of a pipeline under the action of variable internal pressure and moving supports. Journal of Machinery Manufacture and Reliability, Vol. 49, Issue 7, pp. 555–561. DOI: 10.3103/S1052618820070134.
Shao, Y.-F., Fan, X., Shu, S., Ding, H., and Chen, L.-Q. (2022). Natural frequencies, critical velocity and equilibriums of fixed–fixed Timoshenko pipes conveying fluid. Journal of Vibration Engineering & Technologies, Vol. 10, Issue 5, pp. 1623–1635. DOI: 10.1007/s42417-022-00469-0.
Shui, B., Li, Y.-D., Luo, Y.-M., and Luo, F. (2023). Free vibration analysis of Timoshenko pipes conveying fluid with gravity and different boundary conditions. Journal of Mechanics, Vol. 39, pp. 367–384. DOI: 10.1093/jom/ufad031.
Sokolov, V. and Razov, I. (2020). Free oscillations of semi-underground trunk thin-wall oil pipelines of big diameter. In: Murgul, V. and Pasetti, M. (eds.). International Scientific Conference. Energy Management of Municipal Facilities and Sustainable Energy Technologies. EMMFT-2018. Advances in Intelligent Systems and Computing, Vol. 982. Cham: Springer, pp. 615–627. DOI: 10.1007/978-3-030-19756-8_58.
Tan, X. and Tang, Y.-Q. (2023). Free vibration analysis of Timoshenko pipes with fixed boundary conditions conveying high velocity fluid. Heliyon, Vol. 9, Issue 4, e14716. DOI: 10.1016/j.heliyon.2023.e14716.
Xü, W.-H., Xie, W.-D., Gao, X.-F., and Ma, Y.-X. (2018). Study on vortex-induced vibrations (VIV) of free spanning pipeline considering pipe-soil interaction boundary conditions. Journal of Ship Mechanics, Vol. 22, Issue 4, pp. 446–453. DOI: 10.3969/j.issn.1007-7294.2018.04.007.
Yulmukhametov, A. A., Shakiryanov, M. M., and Utyashev, I. M. (2020). Bending vibrations of the pipeline under the influence of the internal added mass. In: AIP Conference Proceedings. Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin, 29 June – 3 July 2020, Novosibirsk, Russia, Vol. 2288, Issue 1, 030093. DOI: 10.1063/5.0028885.
Refbacks
- There are currently no refbacks.