INNOVATIVE CONSTRUCTION MATERIAL BASED ON AERATED CERAMICS

Konstantin Dmitriev, Victor Zverev

Abstract


The study looks at the production of effective construction materials based on clay rocks of various mineral and chemical compositions. A method for the manufacturing of aerated ceramic materials and products with the specified average density is described; results of their structure analysis, as well as physical and mechanical characteristics of aerated ceramic samples are presented.
The main production stages for the creation of a cellular structure of a ceramic shard are presented, and the prospects of aeration technology for clay masses for the production of a non-combustible material that allows the construction of wall enveloping structures with high strength and thermophysical parameters is proved.

Keywords


Clay, aeration, cellular ceramics, ceramic slurry, structure

Full Text:

PDF

References


Boldyrev, A.S., Dobuzhinskiy, V.I., Rekitar, Ya.A. (1980). Tekhnicheskii progress v promyshlennosti stroitelnykh materialov [Technological advances in the construction materials industry]. Moscow: Stroyizdat, p. 399. (in Russian)

Dmitryev, K.S. (2015). Peptizatciia glinistykh suspenzii v tekhnologii penokeramiki [Peptization of clay suspensions in the foam ceramics technology]. Fundamental Research, 10 (2), pp. 249–253. (in Russian)

Gonzenbach, U.T., Studart, A.R., Tervoort, E., Gauckler, L.J. (2007). Macroporous ceramics from particle-stabilized wet foams. Journal of the American Ceramic Society, 90 (1), pp. 19–22. DOI: 10.1111/j.1551-2916.2006.01328.x

Krutov, Yu.M., Gavrilyuk, A.Yu. (2012). Sposob polucheniia penokeramiki i izdelii iz nee [Method for the preparation of foam ceramics and foam ceramics products]. Patent No. 2469979 of the RF, MPK S 04 V 33/13, S 04 V 28/26, S 04 V 38/00, S 04 V 40/00 [МПК C 04 B 33/13, C 04 B 28/26, C 04 B 38/00, C 04 B 40/00]. No. 2010130850/03, Application dd. 22.07.2010. Bulletin, 35, p.9. (in Russian)

Morris, G., Pursell, M. R., Neethling, S. J., Cilliers, J. J. (2008). The effect of particle hydrophobicity, separation distance and packing patterns on the stability of a thin film. Journal of Colloid and Interface Science, 327, pp. 138–144. DOI: 10.1016/j.jcis.2008.08.007

Rekitar, Ya. A. (1981). Tendentcii razvitiia stroitelstva v vedushchikh kapitalisticheskikh stranakh [Trends in the development of construction in leading capitalist countries]. Moscow: Nauka, p. 336. (in Russian)

Rogovoy, M.I. (1974). Tekhnologiia iskusstvennykh poristykh zapolnitelei i keramiki [Technology of artificial porous fillers and ceramics]. Moscow: Stroyizdat, p.315. (in Russian)

Selivanov, Yu.V., Shiltsyna, A.D., Loginova, Ye.V., Selivanov, V.M. (2013). Syrevaia smes dlia izgotovleniia keramicheskikh teploizoliatcionnykh stroitelnykh materialov [Raw mix for the production of ceramic heat-insulating construction materials]. Patent No. 2484063 of the Russian Federation: MPK S 04 V 38/02, S 04 V 33/00 [МПК C 04 B 38/02, C 04 B 33/00]. Siberian Federal University. Application dd. 06.02.2012, No. 2012104036/03. Bulletin, 16. p. 6. (in Russian)

Zavadsky, V.F., Putro, N.B., Maksimova, Yu.S. (2004). Porizovannaia stroitelnaia keramika [Porous construction ceramics]. Stroitelniye Materialy [Construction Materials], 2, pp. 50–51. (in Russian)




DOI: https://doi.org/10.23968/2500-0055-2017-2-4-9-13

Refbacks

  • There are currently no refbacks.




     

ISSN: 2500-0055