CALCULATION AND TESTING OF A REINFORCED CONICAL BRIDGE BEAM
Abstract
Keywords
Full Text:
PDFReferences
Balduzzi, G., Aminbaghai, M., Sacco, E., Füssl, J., Eberhardsteiner, J., and Auricchio, F. (2016). Non-prismatic beams: A simple and effective Timoshenko-like model. International Journal of Solids and Structures, Vol. 90, pp. 236–250. DOI: 10.1016/j.ijsolstr.2016.02.017.
Barham, W. S. and Idris, A. A. (2021). Flexibility-based large increment method for nonlinear analysis of Timoshenko beam structures controlled by a bilinear material model. Structures, Vol. 30, pp. 678–691. DOI: 10.1016/j.istruc.2021.01.023.
Cazzani, A., Malagù, M., and Turco, E. (2016). Isogeometric analysis of plane-curved beams. Mathematics and Mechanics of Solids, Vol. 21, Issue 5, pp. 562–577. DOI: 10.1177/1081286514531265.
Chockalingam, S. N., Nithyadharan, M., and Pandurangan, V. (2020). Shear stress distribution in tapered I-beams: Analytical expression and finite element validation. Thin-Walled Structures, Vol. 157, 107152. DOI: 10.1016/j.tws.2020.107152.
Chockalingam, S. N., Pandurangan, V., and Nithyadharan, M. (2021). Timoshenko beam formulation for in-plane behaviour of tapered monosymmetric I-beams: Analytical solution and exact stiffness matrix. Thin-Walled Structures, Vol. 162, 107604. DOI: 10.1016/j.tws.2021.107604.
Committee for Construction, Housing and Communal Services and Land Management of the Ministry of National Economy of the Republic of Kazakhstan (2015). Regulations SP RK 3.03-112-2013. Bridges and culverts. Astana: Ministry of National Economy of the Republic of Kazakhstan, 717 p.
Falsone, G. (2018). The use of generalized functions modeling the concentrated loads on Timoshenko beams. Structural Engineering and Mechanics, Vol. 67, No. 4, pp. 385–390. DOI: 10.12989/sem.2018.67.4.385.
Gosstroy of Russia (1998). State Standard GOST 8829-94. Reinforced concrete and prefabricated concrete building products. Loading test methods. Assessment of strength, rigidity and crack resistance. Moscow: Gosstroy of Russia, 27 p.
Government of the Republic of Kazakhstan (2010). Technical Regulations “Safety requirements for buildings and structures, building materials and products”. Astana: Government of the Republic of Kazakhstan, 40 p.
Gusev, B. V. and Saurin, V. V. (2017). On vibrations of inhomogeneous beams. [online]. Available at: http://www.info-rae.ru/o-kolebaniyax-neodnorodnyx-balok/ [Date accessed March 1, 2023].
Gusev, B. V. and Saurin, V. V. (2018). Variational approaches to finding eigenvalues for beams with variable cross-section. Innovations and Investments, No. 3, pp. 253–264.
Jalairov, A., Kumar, D., Kassymkanova, K.-K., Nuruldaeva, G., Imankulova, A. (2022a). Structural behavior of prestressed concrete bridge girder with monolithic joint. Communications - Scientific Letters of the University of Zilina, Vol. 24, Issue 4, pp. D150–D159. DOI: 10.26552/com.C.2022.4.D150-D159.
Petukhov, L. V. (1980). Thin curvilinear beams of minimum weight. Journal of Applied Mathematics and Mechanics, Vol. 44, Issue 4, pp. 508–512. DOI: 10.1016/0021-8928(80)90042-8.
Jalairov, A., Kumar, D., Kassymkanova, K.-K., Sarsembekova, Z., Nuruldaeva, G., and Jangulova, G. (2022b). Structural behavior of prestressed concrete bridge girder with epoxy joint. Communications - Scientific Letters of the University of Zilina, Vol. 24, Issue 2, pp. D59–D71. DOI:10.26552/com.C.2022.2.D59-D71.
Ministry of Construction, Housing and Utilities of the Russian Federation (2019). Regulations SP.63.13330.2018. Concrete and reinforced concrete structures. General provisions. Moscow: Standartinform, 117 p.
Resan, S. F. and Zamel, J. K. (2021a). Flexural behavior of developed reinforced concrete beams of non prismatic flanges. Materials Today: Proceedings, Vol. 42, Part 5, pp. 2974–2983. DOI: 10.1016/j.matpr.2020.12.808.
Resan, S. F. and Zamel, J. K. (2021b). Rotation capacity assessment in developed non prismatic flanged reinforced concrete Tee beams. Case Studies in Construction Materials, Vol. 14, e00517. DOI: 10.1016/j.cscm.2021.e00517.
Ruditsyn, M. N. (1940). Calculation of beams with variable cross-section, framed and strutted systems by breaking loads. [online] Available at: https://elib.belstu.by/bitstream/123456789/35163/1/%D0%A0%D1%83%D0%B4%D0%B8%D1%86%D1%8B%D0%BD.pdf [Date accessed March 1, 2023].
Saurin, V. V. (2019). Analysis of dynamic behavior of beams with variable cross-section. Lobachevskii Journal of Mathematics, Vol. 40, Issue 3, pp. 364–374. DOI: 10.1134/S1995080219030168.
Shalkarov, A. A., Karasay, S. Sh., Tanirbergenov, A. K., and Murzalina, G. B. (2018). Monitoring the manufacture of UBS 185.14 blocks for the overhead span structure in Almaty. Bulletin of Omsk regional Institute, No. 4, pp. 13–26.
Smirnov, A. F. (ed.). (1961). Strength of materials. Moscow: Transjeldorızdat, 591 p.
Tayfur, Y., Darby, A., Ibell, T., Orr, J., and Evernden, M. (2019). Serviceability of non-prismatic concrete beams: Combinedinteraction method. Engineering Structures, Vol. 191, pp. 766–774. DOI: 10.1016/j.engstruct.2019.04.044.
Timoshenko, S. P. (1965). Strength of materials. Part 1. Elementary Theory and Problems. Moscow: Nauka, 363 p.
Wang, C. M., Thevendran, V., Teo, K. L., and Kitipornchai, S. (1986). Optimal design of tapered beams for maximum buckling strength. Engineering Structures, Vol. 8, Issue 4, pp. 276–284. DOI: 10.1016/0141-0296(86)90035-0.
Yassopoulos, C., Leake, C., Reddy, J. N., and Mortari, D. (2021). Analysis of Timoshenko–Ehrenfest beam problems using the Theory of Functional Connections. Engineering Analysis with Boundary Elements, Vol. 132, pp. 271–280. DOI: 10.1016/j.enganabound.2021.07.011.
Zheng, T. and Ji, T. (2011). Equivalent representations of beams with periodically variable cross-sections. Engineering Structures, Vol. 33, Issue 3, pp. 706–719. DOI: 10.1016/j.engstruct.2010.11.007.
Zhernakov, V. S., Pavlov, V. P., and Kudoyarova, V. M. (2017). Spline-method for numerical calculation of naturalvibration frequency of beam with variable cross-section. Procedia Engineering, Vol. 206, pp. 710–715. DOI: 10.1016/j. proeng.2017.10.542.
Zhong, J., Zhuang, H., Shiyang, P., and Zhou, M. (2021). Experimental and numerical analysis of crack propagation in reinforced concrete structures using a three-phase concrete model. Structures, Vol. 33, pp. 1705–1714. DOI: 10.1016/j.istruc.2021.05.062.
Zhou, M., Fu, H., Su, X., and An, L. (2019a). Shear performance analysis of a tapered beam with trapezoidally corrugated steel webs considering the Resal effect. Engineering Structures, Vol. 196, 109295. DOI: 10.1016/j.engstruct.2019.109295.
Zhou, M., Liao, J., Zhong, J., An, L., and Wang, H. (2021). Unified calculation formula for predicting the shear stresses in prismatic and non-prismatic beams with corrugated steel web. Structures, Vol. 29, pp. 507–518. DOI: 10.1016/j.istruc.2020.11.060.
Zhou, M., Shang, X., Hassanein, M. F., and Zhou, L. (2019b). The differences in the mechanical performance of prismatic and non-prismatic beams with corrugated steel webs: A comparative research. Thin-Walled Structures, Vol. 141, pp. 402–410. DOI: 10.1016/j.tws.2019.04.049.
Refbacks
- There are currently no refbacks.