ON THE AUTOGENOUS SHRINKAGE OF CEMENT PASTES

Abdelghafour Saadi, Abdelmalek Brahma

Abstract


Introduction: This study focuses on autogenous shrinkage in cement pastes and presents a novel calculation method considering variations in internal relative humidity (IRH). IRH significantly influences autogenous shrinkage, and its evolution is modeled based on decline curves. The proposed method accurately evaluates autogenous shrinkage and aligns well with experimental data. Additionally, we calculate capillary depression and meniscus radius using the Laplace–Kelvin equation. Methods: To address early autogenous shrinkage in construction materials, we developed our calculation method, emphasizing IRH variation. We analyzed decline curves to model IRH and validated our model using literature-based experimental data. Results: Our validated model for predicting IRH and autogenous shrinkage in Portland cement pastes, based on cement paste hydration degree, water-to-cement ratio (w/c), and the critical degree of hydration (αcr), closely aligns with experimental data and existing models.

Keywords


cement paste, autogenous shrinkage, internal relative humidity, prediction, modeling, decline curves

Full Text:

PDF

References


Arps, J. J. (1945). Analysis of decline curves. Transactions of the AIME, Vol. 160, Issue 01, pp. 228–247. DOI: 10.2118/945228-G.

Bažant, Z. P. and Prasannan, S. (1989). Solidification theory for concrete creep. I: Formulation. Journal of Engineering Mechanics, Vol. 115, Issue 8, pp. 1691–1703.

Bentz, D. P. and Aïtcin, P.-C. (2008). The hidden meaning of water-to-cement ratio. Concrete International, Vol. 30, No. 5, pp. 51–54.

Bentz, D. P., Garboczi, E. J., Jennings, H. M., and Quenard, D. A. (1994). Multi-scale digital-image-based modelling of cement-based materials. MRS Online Proceedings Library, Vol. 370, pp. 33–41. DOI: 10.1557/PROC-370-33.

Bentz, D. P., Jensen, O. M., Hansen, K. K., Oleson, J. F., Stang, H., and Haecker, C.J. (2004). Influence of cement particle size distribution on early age autogenous strains and stresses in cement-based materials. Journal of the American Ceramic Society, Vol. 84, Issue 1, pp. 129–135. DOI: 10.1111/j.1151-2916.2001.tb00619.x.

Cervera, M., Oliver, J., and Prato, T. (1999). A thermo-chemo-mechanical model for concrete. I: Hydration and aging. Journal of Engineering Mechanics, Vol. 125, Issue 9, pp.1018–1027. DOI: 10.1061/(ASCE)0733-9399(1999)125:9(1018).

Davis, H. E. (1940). Autogenous volume changes of concrete. Proceedings of ASTM, Vol. 40, pp. 1103–1110.

Eguchi, K. and Teranishi, K. (2005). Prediction equation of drying shrinkage of concrete based on composite model. Cement and Concrete Research, Vol. 35, Issue 3, pp. 483–493. DOI: 10.1016/j.cemconres.2004.08.002.

Ferdinand P. Beer, E. Russel Johnson, Jr. John T. DeWolf, David F. Mazurek. (2012) Mechanics of materials. 6th edition. McGraw-Hill, 758 p.

Haecker, C.-J., Garboczi, E. J., Bullard, J. W., Bohn, R. B., Sun, Z., Shah, S. P., and Voigt, T. (2005). Modeling the linear elastic properties of Portland cement paste. Cement and Concrete Research, Vol. 35, Issue 10, pp. 1948–1960. DOI: 10.1016/j.cemconres.2005.05.001.

Hansen, P. F. and Pedersen, E. J. (1977). Maturity computer for controlled curing and hardening of concrete. Nordisk Betong, Issue 1, pp. 21–25.

Hua, C., Acker, P., and Ehrlacher, A. (1995). Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale. Cement and Concrete Research, Vol. 25, Issue 7, pp. 1457–1468. DOI: 10.1016/0008-8846(95)00140-8.

Hua, C., Ehrlacher, A., and Acker, P. (1997). Analyses and models of the autogenous shrinkage of hardening cement paste II. Modelling at scale of hydrating grains. Cement and Concrete Research, Vol. 27, Issue 2, pp. 245–258. DOI: 10.1016/S0008-8846(96)00202-5.

Huang, H. and Ye, G. (2016). Use of rice husk ash for mitigating the autogenous shrinkage of cement pastes at low water cement ratio. 4th International Symposium on Ultra-High-Performance Concrete and High-Performance Construction Materials, Kassel, Germany, March 09–11, 2016.

Koenders, E. A. B. and van Breugel, K. (1997). Numerical modelling of autogenous shrinkage of hardening cement paste. Cement and Concrete Research, Vol. 27, Issue 10, pp. 1489–1499. DOI: 10.1016/S0008-8846(97)00170-1.

Kumarappa, D. B., Peethamparan, S., and Ngami, M. (2018). Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cement and Concrete Research, Vol. 109, pp. 1–9. DOI: 10.1016/j.cemconres.2018.04.004.

Lu, T., Li, Z., and van Breugel, K. (2020). Modelling of autogenous shrinkage of hardening cement paste. Construction and Building Materials, Vol. 264, 120708. DOI: 10.1016/j.conbuildmat.2020.120708.

Lura, P., Jensen, O. M. and van Breugel, K. (2003). Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cement and Concrete Research, Vol. 33, Issue 2, pp. 223–232. DOI: 10.1016/S0008-8846(02)00890-6.

Mabrouk, R., Ishida, T., and Maekawa, K. (2004). A unified solidification model of hardening concrete composite for predicting the young age behavior of concrete. Cement and Concrete Composites, Vol. 26, Issue 5, pp. 453–461. DOI: 10.1016/S0958-9465(03)00073-8.

Mounanga, P. (2003).Étude expérimentale du comportement de pâtes de ciment au très jeune âge : hydratation, retraits, propriétés thermophysiques.PhD Thesis in Civil Engineering, University of Nantes.

Neubauer, C. M., Jennings, H. M., and Garboczi, E. J. (1996). A three-phase model of the elastic and shrinkage properties of mortar. Advanced Cement Based Materials, Vol. 4, Issue 1, pp. 6–20. DOI: 10.1016/S1065-7355(96)90058-9.

Paulini, P. (1994). A through solution model for volume changes of cement hydration. Cement and Concrete Research, Vol. 24, Issue 3, pp. 488–496. DOI: 10.1016/0008-8846(94)90137-6.

RILEM TC 119-TCE (1997). Recommendations of TC 119-TCE: Avoidance of thermal cracking in concrete at early ages. Materials and Structures, Vol. 30, Issue 202, pp. 451–464.

Schindler, A. and Folliard, K. (2005). Heat of hydration models for cementitious materials. ACI Materials Journal, Vol. 102, Issue 1, pp. 24–33. DOI: 10.14359/14246.

Shen, D., Zhou, B., Wang, M., Chen, Y., and Jiang, G. (2018). Predicting relative humidity of early-age concrete under sealed and unsealed conditions. Magazine of Concrete Research, 1800068. DOI: 10.1680/jmacr.18.00068.

Shimomura, T. and Maekawa, T. (1997). Analysis of the drying shrinkage behavior of concrete using a micromechanical model based on the micropore structure of concrete. Magazine of Concrete Research, Vol. 49, Issue 181, pp. 303–322. DOI: 10.1680/macr.1997.49.181.303.

Song, C., Hong, G., and Choi, S. (2020). Modeling autogenous shrinkage of hydrating cement paste by estimating the meniscus radius. Construction and Building Materials, Vol. 257, 119521. DOI: 10.1016/j.conbuildmat.2020.119521.

Stefan, L., Benboudjema, F., Torrenti, J.-M., and Bissonnette, B. (2010). Prediction of elastic properties of cement pastes at early ages. Computational Materials Science, Vol. 47, Issue 3, pp. 775–784. DOI: 10.1016/j.commatsci.2009.11.003.

Xi, Y. and Jennings, H. M. (1997). Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory. Materials and Structures, Vol. 30, Issue 6, pp. 329–339. DOI: 10.1007/BF02480683.

Ulm, F.-J., Constantinides, G., and Heukamp, F. H. (2004). Is concrete a poromechanics material? – A multiscale investigation of poroelastic properties. Materials and Structures, Vol. 37, Issue 1, pp. 43–58. DOI: 10.1007/BF02481626.

van Breugel, K. (2001). Numerical modelling of volume changes at early ages-Potential, pitfalls and challenges.Materials and Structures, Vol. 34, Issue 5, pp. 293–301. DOI: 10.1007/BF02482209.

Wei, Y., Wang, Y., and Gao, X. (2015). Effect of internal curing on moisture gradient distribution and deformation of a concrete pavement slab containing pre-wetted lightweight fine aggregates. Drying Technology, Vol. 33, Issue 3, pp. 335–364. DOI: 10.1080/07373937.2014.952740.

Wyrzykowski, M. and Lura, P. (2013). Moisture dependence of thermal expansion in cement-based materials at early ages. Cement and Concrete Research, Vol. 53, pp. 25–35. DOI: 10.1016/j.cemconres.2013.05.016.


Refbacks

  • There are currently no refbacks.




     

ISSN: 2500-0055