SMART MULTI-FUNCTIONAL MICRO-HUB FOR NEIGHBORHOODS: SUSTAINABLE MOBILITY AND ENVIRONMENTAL RESTORATION IN HIGH-DENSITY SOCIAL NEIGHBORHOODS
Abstract
Introduction: Outdoor parking lots have been a common and cost-effective solution for private mobility in European social housing districts built between the 1960s and 1980s, but this solution has significant, particularly environmental and spatial, impacts. The future of urban mobility requires changes to an electrified community model, based on shared vehicle fleets. Purpose of the study: We aimed to analyze the transport, social, and environmental improvements of a smart multi-functional micro-hub for neighborhoods — a theoretical proposal designed to facilitate the transition toward a decarbonized city. Methods: The literature is therefore reviewed and a case study of the city of Malaga is provided. Results: On the one hand, the findings show the environmental, economic, and spatial advantages of this model compared to traditional underground parking lots. On the other hand, the paper proposes the design characteristics that could be adopted by a particular type of buildings and their urban space. Finally, the paper discusses the implications of setting up a citywide network of micro-hubs and the ensuing benefits.
Keywords
Full Text:
PDFReferences
Alarcos A. and Ginés, Á. (2017). Evaluation of the mobility station in Domagkpark, Munich - Development and test of a methodology for the impact and process evaluation of sustainable mobility measures in the framework of the ECCENTRIC project. [online] Available at: https://mediatum.ub.tum.de/doc/1446939/1446939.pdf [Date accessed November 1, 2022].
ARUP (2019). Tomorrow’s living station. [online] Available at: https://www.arup.com/perspectives/publications/promotional-materials/section/tomorrows-living-station [Date accessed November 1, 2022].
Ayuntamiento de Málaga (2011). Plan de Movilidad Urbana Sostenible. [online] Available at: https://movilidad.malaga.eu/opencms/export/sites/movilidad/.content/galerias/Documentos-del-site/PMUS.pdf [Date accessed November 1, 2022].
Bachand-Marleau, J., Lee, B. H. Y., and El-Geneidy, A. M. (2012). Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use. Transportation Research Record, Vol 2314, Issue 1, pp. 66–71. DOI: 10.3141/2314-09.
Barter, P. (2013). "Cars are parked 95% of the time". Let’s check! [online] Available at: https://www.reinventingparking.org/2013/02/cars-are-parked-95-of-time-lets-check.html [Date accessed November 1, 2022].
Barcellos de Souza, G. (2006). About the deployments of the Neighborhood Unit. The communitarian space in Leon Krier’s Polycentric City. Bitácora, 10(1), 7–26.
Bates, J. and Leibling, D. (2012). Spaced out. Perspectives on parking policy. [online] Available at: http://www.racfoundation.org/assets/rac_foundation/content/downloadables/spaced_out-bates_leibling-jul12.pdf [Date accessed November 1, 2022].
Batra, A. (2014). Optimum car parking solutions. Institute of Town Planners, India Jorunal, Vol. 11, No. 3, pp. 39–46.
Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, Vol. 67, Issue 8, pp. 1595–1600. DOI: 10.1016/j.jbusres.2013.10.001.
Carlorosi, C., Pugnaloni, F., and Filippini, G. (2015). Eco-infrastructural labs for urban utopias Moscow as slow metropolis. GSTF Journal of Engineering Technology (JET), Vol. 3, Issue 3, 25. DOI: 10.7603/s40707-014-0025-z.
Dacko, S. G. and Spalteholz, C. (2014). Upgrading the city: Enabling intermodal travel behaviour. Technological Forecasting and Social Change, Vol. 89, pp. 222–235. DOI: 10.1016/j.techfore.2013.08.039.
Demartini, J. I., Bertoni, G. A., and Piga, L. (2019). Recolección y reutilización de las aguas de lluvia en edificios como beneficio para las ciudades. Arquitecno, No. 13, pp. 35–46. DOI: 10.30972/arq.0134160.
Domènech, L. and Saurí, D. (2011). A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): social experience, drinking water savings and economic costs. Journal of Cleaner Production, Vol. 19, Issues 6–7, pp. 598–608. DOI: 10.1016/j.jclepro.2010.11.010.
Efthymiou, D., Chaniotakis, E., & Antoniou, C. (2019). Factors affecting the adoption of vehicle sharing systems. In: Antoniou, C., Efthymiou, D., and Chaniotakis, E. (eds.). Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns. Amsterdam: Elsevier, pp. 189–209. DOI: 10.1016/B978-0-12-815018-4.00010-3.
Fishman, E., Washington, S., Haworth, N., and Watson, A. (2015). Factors influencing bike share membership: an analysis of Melbourne and Brisbane. Transportation Research Part A: Policy and Practice, Vol. 71, pp. 17–30. DOI: 10.1016/j.tra.2014.10.021.
Frankel, E. H. (1998). The future robotic parking and the ever-changing dynamics of land use. Architectural Record, Vol. 186, Issue 6, 232.
Gehl, J. (1987). Life Between Buildings. Using Public Space. Van Nostrand Reinhold.
Graham-Rowe, E., Skippon, S., Gardner, B., and Abraham, C. (2011). Can we reduce car use and, if so, how? A review of available evidence. Transportation Research Part A: Policy and Practice, Vol. 45, Issue 5, pp. 401–418. DOI: 10.1016/j.tra.2011.02.001.
Henley, S. (2007). The Architecture of Parking. Thames & Hudson. https://doi.org/10.1111/j.1531-314x.2010.01118.x
Hernandez, S. and Monzon, A. (2016). Key factors for defining an efficient urban transport interchange: Users’ perceptions. Cities, Vol. 50, pp. 158–167. DOI: 10.1016/j.cities.2015.09.009.
Idris, M. Y. I., Leng, Y. Y., Tamil, E. M., Noor, N. M., and Razak, Z. (2009). Car park system: A review of smart parking system and its technology. Information Technology Journal, Vol. 8, Issue 2, pp. 101–113. DOI: 10.3923/itj.2009.101.113.
IECA (2022). Distribución espacial de la población en Andalucia. [online] Available at: http://www.juntadeandalucia.es/institutodeestadisticaycartografia/distribucionpob/index.htm [Date accessed November 1, 2022].
International Energy Agency (2017). CO2 Emissions from Fuel Combustion Highlights 2017. [online] Available at: www.iea.org/publications/freepublications/publication/CO2-emissions-from-fuel-combustion-highlights-2017.html [Date accessed January 12, 2018].
Johansson, R. (2003). Case study methodology. [online] Available at: http://www.psyking.net/htmlobj-3839/case_study_methodology-_rolf_johansson_ver_2.pdf [Date accessed November 1, 2022].
Kane, M. and Whitehead, J. (2017). How to ride transport disruption –a sustainable framework for future urban mobility*. Australian Planner, Vol. 54, Issue 3, pp. 177–185. DOI: 10.1080/07293682.2018.1424002.
Kay, J. H. (2001). A brief history of parking: the life and after-life of paving the planet. Architecture, Vol. 90, No. 2, 78.
Loo, B. P. Y., & du Verle, F. (2017). Transit-oriented development in future cities: towards a two-level sustainable mobility strategy. International Journal of Urban Sciences, 21, 54–67. https://doi.org/10.1080/12265934.2016.1235488
Maienschein-Cline, L. M. (2014). Catalytic parking: creating new possibilities in an integrated suburban parking garage. Seattle: University of Washington, 73 p.
Martin, E., Shaheen, S. A., and Lidicker, J. (2010). Impact of carsharing on household vehicle holdings: results from North American shared-use vehicle survey. Transportation Research Record, Vol. 2143, Issue 1, pp. 150–158. DOI: 10.3141/2143-19.
Mezoued, A. M., Letesson, Q., & Kaufmann, V. (2021). Making the slow metropolis by designing walkability: a methodology for the evaluation of public space design and prioritizing pedestrian mobility. Urban Research & Practice, 1–20. https://doi.org/10.1080/17535069.2021.1875038
Monzón, A., Hernández, S., and Di Ciommo, F. (2016). Efficient urban interchanges: the City-HUB model. Transportation Research Procedia, Vol. 14, pp. 1124–1133. DOI: 10.1016/j.trpro.2016.05.183.
Perry, C. A. (1929). City Planning for Neighborhood Life. Social Forces, 8(1), 98–100. https://doi.org/10.2307/2570059
Robotic Parking Systems (2020a). Changing the dynamics of land use. [online] Available at: https://www.roboticparking.com/do-more-with-less/changing-the-dynamics-of-land-use/ [Date accessed November 1, 2022].
Robotic Parking Systems (2020b). Green Parking. [online] Available at: https://www.roboticparking.com/green-parking/ [Date accessed November 1, 2022].
Rueda, S. (2011). Las supermanzanas: reinventando el espacio público, reinventando la ciudad. In: Armand, L. (ed.). Ciudades (im) propias: la tensión entre lo global y lo local. Valencia: Centro de Investigación Arte y Entorno, pp. 123–132.
Rueda, S. (2012). El urbanismo ecológico: su aplicación en el diseño de un ecobarrio en Figueres. Barcelona: Agencia de Ecología Urbana, 304 p.
Rueda, S. (2016). La supermanzana, nueva célula urbana para la construcción de un nuevo modelo funcional y urbanístico de Barcelona. [online] Available at: http://bcnecologia.net/sites/default/files/proyectos/la_supermanzana_nueva_celula_poblenou_salvador_rueda.pdf [Date accessed November 1, 2022].
Seeley, M. (2008). How a hillside impacts parking garage design: the Calhoun Street parking garage. Parking, Vol. 47, Issue 7, pp. 38–41.
Shaheen, S. and Chan, N. (2015). Mobility and the sharing economy: impacts synopsis. [online] Available at: http://innovativemobility.org/wp-content/uploads/Innovative-Mobility-Industry-Outlook_SM-Spring-2015.pdf [Date accessed November 1, 2022].
Shaheen, S. A. and Cohen, A. P. (2013). Carsharing and personal vehicle services: worldwide market developments and emerging trends. International Journal of Sustainable Transportation, Vol. 7, Issue 1, pp. 5–34. DOI: 10.1080/15568318.2012.660103.
Shaheen, S. and Cohen, A. (2020). Mobility on demand (MOD) and mobility as a service (MaaS): Early understanding of shared mobility impacts and public transit partnerships. In: Antoniou, C., Efthymiou, D., and Chaniotakis, E. (eds.). Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns. Amsterdam: Elsevier, pp. 37–59. DOI: 10.1016/B978-0-12-815018-4.00003-6.
Shaheen, S. A., Guzman, S., and Zhang, H. (2010a). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation Research Record, Vol. 2143, Issue 1, pp. 159–167. DOI: 10.3141/2143-2.
Shaheen, S. A., Rodier, C., Murray, G., Cohen, A., and Martin, E. (2010b). Carsharing and public parking policies: assessing benefits, costs, and best practices in North America. MTI Report 09-09. San José, CA: Mineta Transportation Institute, 76 p.
Tablada, A., Kosorić, V., Huang, H., Lau, S. S. Y., and Shabunko, V. (2020). Architectural quality of the productive façades integrating photovoltaic and vertical farming systems: Survey among experts in Singapore. Frontiers of Architectural Research, Vol. 9, Issue 2, pp. 301–318. DOI: 10.1016/j.foar.2019.12.005.
Tulpule, P. J., Marano, V., Yurkovich, S., and Rizzoni, G. (2013). Economic and environmental impacts of a PV powered workplace parking garage charging station. Applied Energy, Vol. 108, pp. 323–332. DOI: 10.1016/j.apenergy.2013.02.068.
Tyrinopoulos, Y. and Antoniou, C. (2020). Review of factors affecting transportation systems adoption and satisfaction. In: Antoniou, C., Efthymiou, D., and Chaniotakis, E. (eds.). Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns. Amsterdam: Elsevier, pp. 11–36. DOI: 10.1016/B978-0-12-815018-4.00002-4.
Verbavatz, V. and Barthelemy, M. (2019). Critical factors for mitigating car traffic in cities. PloS One, Vol. 14, Issue 7, e0219559. DOI: 10.1371/journal.pone.0219559.
Ward, S., Memon, F. A., and Butler, D. (2012). Performance of a large building rainwater harvesting system. Water Research, Vol. 46, Issue 16, pp. 5127–5134. DOI: 10.1016/j.watres.2012.06.043.
Wu, G., Xu, X., Dong, Y., De Koster, R., and Zou, B. (2019). Optimal design and planning for compact automated parking systems. European Journal of Operational Research, Vol. 273, Issue 3, pp. 948–967. DOI: 10.1016/j.ejor.2018.09.014.
Xiang, C., Matusiak, B. S., Røyset, A., and Kolås, T. (2021). Pixelization approach for façade integrated coloured photovoltaics-with architectural proposals in city context of Trondheim, Norway. Solar Energy, Vol. 224, pp. 1222–1246. DOI: 10.1016/j.solener.2021.06.079.
Yoshioka, K., Obata, D., Nanjo, H., Yokozeki, K., Torichigai, T., Morioka, M., and Higuchi, T. (2013). New ecological concrete that reduces CO2 emissions below zero level∼ new method for CO2 capture and storage∼. Energy Procedia, Vol. 37, pp. 6018–6025. DOI: 10.1016/j.egypro.2013.06.530.
DOI: https://doi.org/10.23968/2500-0055-2022-7-4-36-48
Refbacks
- There are currently no refbacks.