IMPROVING URBAN ENERGY RESILIENCE WITH AN INTEGRATIVE FRAMEWORK BASED ON MACHINE LEARNING METHODS
Abstract
Introduction: Climate change and global warming are among the greatest challenges facing the world today. A new concept, known as urban resilience, has been developed in response. There are various approaches to urban resilience. Among them, is the urban energy resilience (UER) approach, which poses a considerable challenge. Machine learning (ML), as an application of artificial intelligence (AI), provides powerful and affordable computing resources, large-scale data mining, advanced algorithms, and real-time monitoring. However, very few studies have investigated how such aspects can be integrated into urban resilience in general, and UER in particular. Purpose of the study: The study develops an integrative framework that can improve UER, based on ML methods. Methodology: We carried out a bibliometric analysis and a systematic review of UER in accordance with AI concepts, models, and applications. Results: The findings of this study were used to create an integrative framework, based on three hierarchical phases, which effectively addressed the main capabilities of UER, identified its priorities, and shed light on how ML can benefit UER as a whole. Novelty: The framework developed in this study also offers insights in integrating ML methods into UER as strategically as possible, especially in the context of climate change and urban energy systems. This framework can serve as reference for specialists and decision-makers aiming to expand AI and ML applications to optimize UER.
Keywords
Full Text:
PDFReferences
Abdul-Rahman, M., Chan, E. H. W., Wong, M. S., and Xu, P. (2021). Big Data for community resilience assessment: A critical review of selected global tools. In: Ye, G., Yuan, H., and Zuo, J. (eds.). Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate. CRIOCM 2019. Singapore: Springer, pp. 1345–1361. DOI: 10.1007/978-981-15-8892-1_94.
Abo El-Einen, O. M., Ahmed, M. M., Megahed, N. A., and Hassan, A. M. (2015). Interactive-based approach for designing facades in digital era. Port-Said Engineering Research Journal, Vol. 19, Issue 1, pp. 72–81.
Ahmad, T., Madonski, R., Zhang, D., Huang, C., and Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, Vol. 160, 112128. DOI: 10.1016/j.rser.2022.112128.
Alammar, A., Jabi, W., and Lannon, S. (2021). Predicting Incident solar radiation on building’s envelope using machine learning. In: SimAUD 2021, April 15–17, 2021, virtually hosted.
Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., and Evins, R. (2015). A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1391–1404. DOI: 10.1016/j.rser.2015.07.123.
Alzghoul, A., Backe, B., Löfstrand, M., Byström, A., and Liljedahl, B. (2014). Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application. Computers in Industry, Vol. 65, Issue 8, pp. 1126–1135. DOI: 10.1016/j.compind.2014.06.003.
Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., Flynn, D., Elizondo-Gonzalez, S., and Wattam, S. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, Vol. 130, 109899. DOI: 10.1016/j.rser.2020.109899.
Arfanuzzaman, M. (2021). Harnessing artificial intelligence and big data for SDGs and prosperous urban future in South Asia. Environmental and Sustainability Indicators, Vol. 11, 100127. DOI: 10.1016/j.indic.2021.100127.
Attia, S., Holzer, P., Homaei, S., Kazanci, O. B., Zhang, C., and Heiselberg, P. (2022). Resilient cooling in buildings – A review of definitions and evaluation methodologies. In: CLIMA 2022 Conference, May 22–25, Rotterdam, the Netherlands. DOI: 10.34641/clima.2022.195.
Badawy, N. M., El Samaty, H. S., and Waseef, A. A. E. (2022). Relevance of monocrystalline and thin-film technologies in implementing efficient grid- connected photovoltaic systems in historic buildings in Port Fouad city, Egypt. Alexandria Engineering Journal, Vol. 61, Issue 12, pp. 12229–12246. DOI: 10.1016/j.aej.2022.06.007.
Bibri, S. (2019) ‘Generating a Vision for Smart Sustainable City of the Future: A Scholarly Backcasting Approach’, European Journal of Futures Research. doi: 10.1186/s40309-019-0157-0.
Bibri, S. E. (2021a). A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability. Energy Informatics, Vol. 4, No. 1, pp. 1–37. DOI: 10.1186/s42162-021-00138-8.
Bibri, S. E. (2021b). Data-driven smart eco-cities of the future: an empirically informed integrated model for strategic sustainable urban development. World Futures, pp. 1–44. DOI: 10.1080/02604027.2021.1969877.
Bibri, S. E. and Krogstie, J. (2019). Generating a vision for smart sustainable city of the future: a scholarly backcasting approach. European Journal of Futures Research, Vol. 7, Issue 1, pp. 1–20. DOI: 10.1186/s40309-019-0157-0.
Bibri, S. E. and Krogstie, J. (2020a). Smart eco‐city strategies and solutions for sustainability: the cases of Royal Seaport, Stockholm, and Western Harbor, Malmö, Sweden. Urban Science, Vol. 4, Issue 1, 11. DOI: 10.3390/urbansci4010011.
Bibri, S. E. and Krogstie, J. (2020b). The emerging data–driven Smart City and its innovative applied solutions for sustainability: the cases of London and Barcelona. Energy Informatics, Vol. 3, 5. doi: 10.1186/s42162-020-00108-6.
Bibri, S. E., Krogstie, J., and Kärrholm, M. (2020). Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. Developments in the Built Environment, Vol. 4, 100021. DOI: 10.1016/j.dibe.2020.100021.
Bosisio, A., Moncecchi, M., Morotti, A., and Merlo, M. (2021). Machine learning and GIS approach for electrical load assessment to increase distribution networks resilience. Energies, Vol. 14, Issue 14, 4133. DOI: 10.3390/en14144133.
Cai, C., Guo, Z., Zhang, B., Wang, X., Li, B., and Tang, P. (2021). Urban morphological feature extraction and multi-dimensional similarity analysis based on deep learning approaches. Sustainability, Vol. 13, Issue 12, 6859. DOI: 10.3390/su13126859.
Cantelmi, R., Steen, R., Di Gravio, G., and Patriarca, R. (2022). Resilience in emergency management: Learning from COVID-19 in oil and gas platforms. International Journal of Disaster Risk Reduction, Vol. 76, 103026. DOI: 10.1016/j.ijdrr.2022.103026.
Carta, S., Pintacuda, L., Owen, I. W., and Turchi, T. (2021). Resilient communities: a novel workflow. Frontiers in Built Environment, Vol. 7, 767779. DOI: 10.3389/fbuil.2021.767779.
Chan, M. F., Witztum, A., and Valdes, G. (2020). Integration of AI and machine learning in radiotherapy QA. Frontiers in Artificial Intelligence, Vol. 3, 577620. DOI: 10.3389/frai.2020.577620.
Chan, J. and Zhang, Y. (2019) Urban resilience in the smart city. In: The 12th Conference of the International Forum on Urbanism: Beyond Resilience, June 24–26, 2019, Jakarta, Indonesia.
Chelleri, L. and Olazabal, M. (eds.) (2012). Multidisciplinary perspectives on urban resilience. Bilbao: Basque Centre for Climate Change, 78 p.
Dey, M., Rana, S.P., and Dudley, S. (2020). A case study based approach for remote fault detection using multi-level machine learning in a smart building. Smart Cities, Vol. 3, Issue 2, pp. 401–419. DOI: 10.3390/smartcities3020021.
Du, Z., Palem, K., Lingamneni, A., Temam, O., Chen, Y., and Wu, C. (2014). Leveraging the error resilience of machine-learning applications for designing highly energy efficient accelerators. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), January 20–23, 2014, Singapore. DOI: 10.1109/ASPDAC.2014.6742890.
Elgheznawy, D., El Enein, O. A., Shalaby, G., Seif, A. (2022). An experimental study of indoor air quality enhancement using breathing walls. Civil Engineering and Architecture, Vol. 10, No. 1, pp. 194–209. DOI: 10.13189/cea.2022.100117.
Elmokadem, A. A., Megahed, N. A., and Noaman, D. S. (2016a). Systematic framework for the efficient integration of wind technologies into buildings. Frontiers of Architectural Research, Vol. 5, Issue 1, pp. 1–14. DOI: 10.1016/j.foar.2015.12.004.
EL-Mokadem, A. A., Megahed, N. A., and Noaman, D. S. (2016b). Towards a Computer Program for building-integrated wind technologies. Energy and Buildings, Vol. 117, pp. 230–244. DOI: 10.1016/j.enbuild.2016.02.022.
El-Mowafy, B. N., Elmokadem, A. A., and Waseef, A. A. (2022). Evaluating adaptive facade performance in early building design stage: an integrated daylighting simulation and machine learning. In: Hassanien, A. E., Rizk, R. Y., Snášel, V., and Abdel-Kader, R. F. (eds.). The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. Lecture Notes on Data Engineering and Communications Technologies, Vol. 113. Cham: Springer, pp. 211–223. DOI: 10.1007/978-3-031-03918-8_20.
Elzeni, M. M., Elmokadem, A. A., and Badawy, N. M. (2021). Genetic algorithms application in urban morphology generation. Port-Said Engineering Research Journal, Vol. 26, No. 1, pp. 21–34. DOI: 10.21608/pserj.2021.87367.1129.
Elzeni, M. M., ElMokadem, A. A., and Badawy, N. M. (2022). Impact of urban morphology on pedestrians: A review of urban approaches. Cities, Vol. 129, 103840. DOI: 10.1016/j.cities.2022.103840.
Erker, S., Stangl, R., and Stoeglehner, G. (2017). Resilience in the light of energy crises – Part I: A framework to conceptualise regional energy resilience. Journal of Cleaner Production, Vol. 164, pp. 420–433. DOI: 10.1016/j.jclepro.2017.06.163.
Eslamlou, M. S., Tabibian, M., and Mirmoghtadaee, M. (2022). Developing a conceptual framework of urban resilience for its application in urban literature, through thematic analysis of texts. Quarterly Journal of Iranian Islamic City Studies, Vol. 12, Issue 45, pp. 71–84.
Farhoumandi, M., Zhou, Q., and Shahidehpour, M. (2021). A review of machine learning applications in IoT-integrated modern power systems. The Electricity Journal, Vol. 34, Issue 1, 106879. DOI: 10.1016/j.tej.2020.106879.
Forootan, M. M., Larki, I., Zahedi, R., and Ahmadi, A. (2022). Machine learning and deep learning in energy systems: a review. Sustainability, Vol. 14, Issue 8, 4832. DOI: 10.3390/su14084832.
Forouzandeh, N., Zomorodian, Z. S., Shaghaghian, Z., and Tahsildoost, M. (2022). Room energy demand and thermal comfort predictions in early stages of design based on the Machine Learning methods. Intelligent Buildings International. DOI: 10.1080/17508975.2022.2049190.
Francis, R. and Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability Engineering & System Safety, Vol. 121, pp. 90–103. DOI: 10.1016/j.ress.2013.07.004.
Gharai, F., Masnavi, M., and Hajibandeh, M. (2018). Urban local-spatial resilience: developing the key indicators and measures, a brief review of literature. The Monthly Scientific Journal of Bagh-e Nazar, Vol. 14, Issue 57, pp. 19–32.
Gull, C. Q., Aguilar, J., and R-Moreno, M. D. (2021). A semi-supervised learning approach to study the energy consumption in smart buildings. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), December 5–7, 2021, Orlando, FL, USA. DOI: 10.1109/SSCI50451.2021.9659911.
Gültekin, Y. (2021). Strategies to improve urban energy efficiency for urban resilience. IOP Conference Series: Materials Science and Engineering, Vol. 1203, 022020. DOI: 10.1088/1757-899X/1203/2/022020.
Guvenir, H. A., Acar, B., Demiroz, G., and Cekin, A. (1997). A supervised machine learning algorithm for arrhythmia analysis. In: Computers in Cardiology 1997. Lund: IEEE, pp. 433–436. DOI: 10.1109/CIC.1997.647926.
Haggag, M., Siam, A. S., El-Dakhakhni, W., Coulibaly, P., and Hassini, E. (2021). A deep learning model for predicting climate-induced disasters. Natural Hazards, Vol. 107, Issue 1, pp. 1009–1034. DOI: 10.1007/s11069-021-04620-0.
Hassan, A. M., El Mokadem, A. A. F., Megahed, N. A., and Abo Eleinen, O. M. (2020a). Improving outdoor air quality based on building morphology: Numerical investigation. Frontiers of Architectural Research, Vol. 9, Issue 2, pp. 319–334. DOI: 10.1016/j.foar.2020.01.001.
Hassan, A. M., ElMokadem, A. A., Megahed, N. A., and Abo Eleinen, O. M. (2020b). Urban morphology as a passive strategy in promoting outdoor air quality. Journal of Building Engineering, Vol. 29, 101204. DOI: 10.1016/j.jobe.2020.101204.
Hassan, S. R., Megahed, N. A., Abo Eleinen, O. M., and Hassan, A. M. (2022). Toward a national life cycle assessment tool: Generative design for early decision support. Energy and Buildings, Vol. 267, 112144. DOI: 10.1016/j.enbuild.2022.112144.
Hasselqvist, H., Renström, S., Strömberg, H., and Håkansson, M. (2022). Household energy resilience: Shifting perspectives to reveal opportunities for renewable energy futures in affluent contexts. Energy Research & Social Science, Vol. 88, 102498. DOI: 10.1016/j.erss.2022.102498.
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, Vol. 4, pp. 1–23. DOI: 10.1146/annurev.es.04.110173.000245.
Hosseini, M. M. and Parvania, M. (2021). Artificial intelligence for resilience enhancement of power distribution systems. The Electricity Journal, Vol. 34, Issue 1, 106880. DOI: 10.1016/j.tej.2020.106880.
Huang, Y., Huang, L., and Zhu, Q. (2022). Reinforcement Learning for feedback-enabled cyber resilience. Annual Reviews in Control, Vol. 53, pp. 273–295. DOI: 10.1016/j.arcontrol.2022.01.001.
Huang, W. and Ling, M. (2019). Machine learning-based method for urban lifeline system resilience assessment in GIS*. In: Rocha, J. and Abrantes, P. (eds.). Geographic Information Systems and Science. Chapter 3. London: IntechOpen. DOI: 10.5772/intechopen.82748.
Huang, B. and Wang, J. (2020). Big spatial data for urban and environmental sustainability. Geo-spatial Information Science, Vol. 23, Issue 2, pp. 125–140. DOI: 10.1080/10095020.2020.1754138.
Hunter, M. (2021). Resilience, fragility, and robustness: cities and COVID-19. Urban Governance, Vol. 1, Issue 2, pp. 115–125. DOI: 10.1016/j.ugj.2021.11.004.
Ismail, R. M., Megahed, N. A., and Eltarabily, S. (2022a). Numerical investigation of the indoor thermal behaviour based on PCMs in a hot climate. Architectural Science Review, Vol. 65, Issue 3, pp. 196–216. DOI: 10.1080/00038628.2022.2058459.
Ismail, R. M., Megahed, N. A., and Eltarabily, S. (2022b). The strategy of using PCMs in building sector applications. Port-Said Engineering Research Journal, Vol. 26, No. 3, pp. 1–12. DOI: 10.21608/pserj.2022.135558.1185.
Jasiūnas, J., Lund, P. D., and Mikkola, J. (2021). Energy system resilience – a review. Renewable and Sustainable Energy Reviews, Vol. 150, 111476. DOI: 10.1016/j.rser.2021.111476.
Kapucu, N., Ge, Y., Martín, Y., and Williamson, Z. (2021). Urban resilience for building a sustainable and safe environment. Urban Governance, Vol. 1, Issue 1, pp. 10–16. DOI: 10.1016/j.ugj.2021.09.001.
Khalili, S., Harre, M., and Morley, P. (2015). A temporal framework of social resilience indicators of communities to flood, case studies: Wagga wagga and Kempsey, NSW, Australia. International Journal of Disaster Risk Reduction, Vol. 13, pp. 248–254. DOI: 10.1016/j.ijdrr.2015.06.009.
Konila Sriram, L. M., Ulak, M. B., Ozguven, E. E., and Arghandeh, R. (2019). Multi-network vulnerability causal model for infrastructure co-resilience. IEEE Access, Vol. 7, pp. 35344–35358. DOI: 10.1109/ACCESS.2019.2904457.
Krishnan, S., Aydin, N. Y., and Comes, T. (2021). Planning support systems for long-term climate resilience: a critical review. In: Geertman, S. C. M., Pettit, C., Goodspeed, R., and Staffans, A. (eds.). Urban Informatics and Future Cities. The Urban Book Series. Cham: Springer, pp. 465–498. DOI: 10.1007/978-3-030-76059-5_24.
Kumar, K. and Saini, R. P. (2021). Application of artificial intelligence for the optimization of hydropower energy generation. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, Vol. 8, Issue 28, e1. doi: 10.4108/eai.6-8-2021.170560.
Ladi, T., Jabalameli, S., and Sharifi, A. (2022). Applications of machine learning and deep learning methods for climate change mitigation and adaptation. Environment and Planning B: Urban Analytics and City Science, Vol. 49, Issue 4, pp. 1314–1330. DOI: 10.1177/23998083221085281.
Li, Q. (2020). Resilience thinking as a system approach to promote China’s sustainability transitions. Sustainability, Vol. 12, Issue 12, 5008. DOI: 10.3390/su12125008.
Liang, X. (2020). Supervised and unsupervised learning models. In: Liang, X. (ed.). Social Computing with Artificial Intelligence. Singapore: Springer, pp. 27–82. DOI: 10.1007/978-981-15-7760-4_4.
Liu, J., Jian, L., Wang, W., Qiu, Z., Zhang, J., and Dastbaz, P. (2021). The role of energy storage systems in resilience enhancement of health care centers with critical loads. Journal of Energy Storage, Vol. 33, 102086. DOI: 10.1016/j.est.2020.102086.
Masnavi, M. R., Gharai, F., and Hajibandeh, M. (2018). Exploring urban resilience thinking for its application in urban planning: a review of literature. International Journal of Environmental Science and Technology, Vol. 16, Issue 1, pp. 567–582. DOI: 10.1007/s13762-018-1860-2.
Megahed, N. A. (2015). Towards a theoretical framework for HBIM approach in historic preservation and management. Archnet-IJAR: International Journal of Architectural Research, Vol. 9, Issue 3, pp. 130–147. DOI: 10.26687/archnet-ijar.v9i3.737.
Megahed, N. A. (2017). An exploration of the control strategies for responsive umbrella-like structures. Indoor and Built Environment, Vol. 27, Issue 1, pp. 7–18. DOI: 10.1177/1420326X16669750.
Megahed, N. A., Abdel-Kader, R. F., and Soliman, H. Y. (2022). Post-pandemic education strategy: framework for artificial intelligence-empowered education in engineering (AIEd-Eng) for lifelong learning. In: Hassanien, A. E., Rizk, R. Y., Snášel, V., and Abdel-Kader, R. F. (eds.). The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. Lecture Notes on Data Engineering and Communications Technologies, Vol. 113. Cham: Springer, pp. 544–556. DOI: 10.1007/978-3-031-03918-8_45.
Megahed, N. A. and Ghoneim, E. M. (2021). Indoor air quality: rethinking rules of building design strategies in post-pandemic architecture. Environmental Research, Vol. 193, 110471. DOI: 10.1016/j.envres.2020.110471.
Molyneaux, L., Brown, C., Wagner, L., and Foster, J. (2016). Measuring resilience in energy systems: Insights from a range of disciplines. Renewable and Sustainable Energy Reviews, Vol. 59, pp. 1068–1079. DOI: 10.1016/j.rser.2016.01.063.
Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S., Rabczuk, T., Shamshirband, S., and Varkonyi-Koczy, A. R. (2019). State of the art of machine learning models in energy systems, a systematic review. Energies , Vol. 12, Issue 7, 1301. DOI: 10.3390/en12071301.
Nashaat, B., Elmokadem, A. and Waseef, A. (2022) ‘Evaluating Adaptive Facade Performance in Early Building Design Stage: An Integrated Daylighting Simulation and Machine Learning’, in, pp. 211–223. doi: 10.1007/978-3-031-03918-8_20.
Nik, V. M., Perera, A. T. D. and Chen, D. (2021). Towards climate resilient urban energy systems: A review. National Science Review, Vol. 8, Issue 3, nwaa134. DOI: 10.1093/nsr/nwaa134.
Noaman, D. S., Moneer, S. A., Megahed, N. A., and El-Ghafour, S. A. (2022). Integration of active solar cooling technology into passively designed facade in hot climates. Journal of Building Engineering, Vol. 56, 104658. DOI: 10.1016/j.jobe.2022.104658.
O’Dwyer, E., Pan, I., Charlesworth, C., Butler, S., and Shah, N. (2020). Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems. Sustainable Cities and Society, Vol. 62, 102412. DOI: 10.1016/j.scs.2020.102412.
Ohshita, S. and Johnson, K. (2017). Resilient urban energy: making city systems energy efficient, low carbon, and resilient in a changing climate. ECEEE Summer Study Proceedings, pp. 719–728. [online] Available at: https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2017/3-local-action/resilient-urban-energy-making-city-systems-energy-efficient-low-carbon-and-resilient-in-a-changing-climate.
Olazabal, M., Chelleri, L., Waters, J. J., and Kunath, A. (2012). Urban resilience: towards an integrated approach. In: 1st International Conference on Urban Sustainability & Resilience, November 5–6, 2012, London, UK.
Ortiz, L., Mustafa, A., Rosenzweig, B., Carrero, R., and McPhearson, T. (2021). Correction to: Modeling urban futures: Data-driven scenarios of climate change and vulnerability in cities. In: Hamstead, Z. A., Iwaniec, D. M., McPhearson, T., Berbés-Blázquez, M., Cook, E. M., and Muñoz-Erickson, T. A. (eds.). Resilient Urban Futures. The Urban Book Series. Cham: Springer, p. С1. DOI: 10.1007/978-3-030-63131-4_13.
Paraschos, P. D., Xanthopoulos, A. S., Koulinas, G. K., and Koulouriotis, D. E. (2022). Machine learning integrated design and operation management for resilient circular manufacturing systems. Computers & Industrial Engineering, Vol. 167, 107971. DOI: 10.1016/j.cie.2022.107971.
Perera, A. T. D., Javanroodi, K., and Nik, V. M. (2021). Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology. Applied Energy, Vol. 285, 116430. DOI: 10.1016/j.apenergy.2020.116430.
Ragheb, S. A., Ayad, H. M., and Galil, R. A. (2017). An energy-resilient city, an appraisal matrix for the built environment. WIT Transactions on Ecology and the Environment, Vol. 226, pp. 667–678. DOI: 10.2495/SDP170581.
Rahimian, M., Cervone, G., Duarte, J. P., and Iulo, L. D. (2020). A machine learning approach for mining the multidimensional impact of urban form on community scale energy consumption in cities. In: Gero, J. S. (eds.). Design Computing and Cognition’20. Cham: Springer, pp. 607–624. DOI: 10.1007/978-3-030-90625-2_36.
Saikia, P., Beane, G., Garriga, R. G., Avello, P., Ellis, L., Fisher, S., Leten, J., Ruiz-Apilánez, I., Shouler, M., Ward, M., and Jiménez, A. (2022). City Water Resilience Framework: A governance based planning tool to enhance urban water resilience. Sustainable Cities and Society, Vol. 77, 103497. DOI: 10.1016/j.scs.2021.103497.
Satterthwaite, D. (2013). The political underpinnings of cities’ accumulated resilience to climate change. Environment and Urbanization, Vol. 25, Issue 2, pp. 381–391. DOI: 10.1177/0956247813500902.
Satterthwaite, D., Archer, D., Colenbrander, S., Dodman, D., Hardoy, J., Mitlin, D., and Patel, S. (2020). Building resilience to climate change in informal settlements. One Earth, Vol. 2, Issue 2, pp. 143–156. DOI: 10.1016/j.oneear.2020.02.002.
Satterthwaite, D. and Dodman, D. (2013). Towards resilience and transformation for cities within a finite planet. Environment and Urbanization, Vol. 25, Issue 2, pp. 291–298. DOI: 10.1177/0956247813501421.
Seneviratne, S., Nice, K. A., Wijnands, J. S., Stevenson, M., and Thompson, J. (2022). Self-supervision, remote sensing and abstraction: representation learning across 3 million locations. [online] Available at: https://arxiv.org/pdf/2203.04445v1.pdf. DOI: 10.48550/arXiv.2203.04445.
Setiadi, H., Mithulananthan, N., Shah, R., Md. Islam, R., Fekih, A., Krismanto, A. U., and Abdillah, M. (2022). Multi-mode damping control approach for the optimal resilience of renewable-rich power systems. Energies, Vol. 15, Issue 9, 2972. DOI: 10.3390/en15092972.
Sharifi, A. (2016). A critical review of selected tools for assessing community resilience. Ecological Indicators, Vol. 69, pp. 629–647. DOI: 10.1016/j.ecolind.2016.05.023.
Sharifi, A. (2019). Resilient urban forms: A macro-scale analysis. Cities, Vol. 85, pp. 1–14. DOI: 10.1016/j.cities.2018.11.023.
Sharifi, A. and Yamagata, Y. (2014a). Major principles and criteria for development of an urban resilience assessment index. In: 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), March 19–21, 2014, Pattaya, Thailand.
Sharifi, A. and Yamagata, Y. (2014b). Resilient urban planning: major principles and criteria. Energy Procedia, Vol. 61, pp. 1491–1495. DOI: 10.1016/j.egypro.2014.12.154.
Sharifi, A. and Yamagata, Y. (2015). A conceptual framework for assessment of urban energy resilience. Energy Procedia. Vol. 75, pp. 2904–2909. DOI: 10.1016/j.egypro.2015.07.586.
Sharifi, A. and Yamagata, Y. (2016a). Principles and criteria for assessing urban energy resilience: A literature review. Renewable and Sustainable Energy Reviews, Vol. 60, pp. 1654–1677. DOI: 10.1016/j.rser.2016.03.028.
Sharifi, A. and Yamagata, Y. (2016b). Urban resilience assessment: multiple dimensions, criteria, and indicators. In: Yamagata, Y. and Maruyama, H. (eds). Urban Resilience. Advanced Sciences and Technologies for Security Applications. Cham: Springer, pp. 259–276. DOI: 10.1007/978-3-319-39812-9_13.
Sharifi, A. and Yamagata, Y. (2018). Resilient urban form: a conceptual framework. In: Yamagata, Y. and Sharifi, A. (eds.). Resilience-Oriented Urban Planning. Lecture Notes in Energy, Vol. 65. Cham: Springer, pp. 167–179. DOI: 10.1007/978-3-319-75798-8_9.
Sugahara, M. and Bermont, L. (2016) Energy and resilient cities. OECD Regional Development Working Papers 2016/5. Paris: OECD Publishing, 94 p. DOI: 10.1787/5jlwj0rl3745-en.
Tekouabou, S. C. K., Diop, E. B., Azmi, R., Jaligot, R., and Chenal, J. (2021). Reviewing the application of machine learning methods to model urban form indicators in planning decision support systems: Potential, issues and challenges. Journal of King Saud University - Computer and Information Sciences, Vol. 34, Issue 8, Part B, pp. 5943–5967. DOI: 10.1016/j.jksuci.2021.08.007.
Thomas, E., Wilson, D., Kathuni, S., Libey, A., Chintalapati, A., and Coyle, J. (2021). A contribution to drought resilience in East Africa through groundwater pump monitoring informed by in-situ instrumentation, remote sensing and ensemble machine learning. Science of The Total Environment, Vol. 780, 146486. DOI: 10.1016/j.scitotenv.2021.146486.
Tien, P. W., Wei, S., Darkwa, J., Wood, C., and Calautit, J. K. (2022). Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality – a review. Energy and AI, Vol. 10, 100198. DOI: 10.1016/j.egyai.2022.100198.
To, L. S., Bruce, A., Munro, P., Santagata, E., MacGill, I., Rawali, M., and Raturi, A. (2021). A research and innovation agenda for energy resilience in Pacific Island Countries and Territories. Nature Energy, Vol. 6, pp. 1098–1103. DOI: 10.1038/s41560-021-00935-1.
Tumini, I., Arriagada Sickinger, C., and Baeriswyl Rada, S. (2017). Model to integrate resilience and sustainability into urban planning. In: Mercader-Moyano, P. (ed.). Sustainable Development and Renovation in Architecture, Urbanism and Engineering. Cham: Springer, pp. 39–49. DOI: 10.1007/978-3-319-51442-0_4.
Wang, J. and Biljecki, F. (2022). Unsupervised machine learning in urban studies: A systematic review of applications. Cities, Vol. 129, 103925. DOI: 10.1016/j.cities.2022.103925.
Wang, Y., Qiu, D., and Strbac, G. (2022). Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems. Applied Energy, Vol. 310, 118575. DOI: 10.1016/j.apenergy.2022.118575.
Williams, C. (1983). A brief introduction to artificial intelligence. In: Proceedings OCEANS ’83, August 29, 1983 – September 1, 1983, San Francisco, CA, USA. DOI: 10.1109/OCEANS.1983.1152096.
Woolf, S., Twigg, J., Parikh, P., Karaoglou, A., and Cheaib, T. (2016). Towards measurable resilience: A novel framework tool for the assessment of resilience levels in slums. International Journal of Disaster Risk Reduction, Vol. 19, pp. 280–302. DOI: 10.1016/j.ijdrr.2016.08.003.
Wu, J., Lu, Y., Gao, H., and Wang, M. (2022). Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning. Computers, Environment and Urban Systems, Vol. 91, 101716. DOI: 10.1016/j.compenvurbsys.2021.101716.
Xie, J., Alvarez-Fernandez, I., and Sun, W. (2020). A review of machine learning applications in power system resilience. In: 2020 IEEE Power & Energy Society General Meeting (PESGM), August 2–6, 2020, Montreal, QC, Canada. DOI: 10.1109/PESGM41954.2020.9282137.
Zekry, M., Al-Hagla, K., and Saadallah, D. (2020) Urban governance as a tool for enhancing resilient urban form: case study Alexandria, Egypt. In: Schrenk, M., Popovich, V. V., Zeile, P., Elisei, P., Beyer, C., Ryser, J., Reicher, C., and Çelik, C. (eds.). REAL CORP 2020. Shaping Urban Change – Livable City Regions for the 21st Century, September 15–18, 2020, Aachen, Germany, pp. 939–948.
Zhang, C., Wei, H., Liao, M., Lin, Y., Wu, Y., and Zhang, H. (2022). Study on machine learning models for building resilience evaluation in mountainous area: a case study of Banan District, Chongqing, China. Sensors, Vol. 22, Issue 3, 1163. DOI: 10.3390/s22031163.
DOI: https://doi.org/10.23968/2500-0055-2022-7-4-17-35
Refbacks
- There are currently no refbacks.