ADHESIVE INTERACTION IN HYBRID POLYMER COMPOSITES. ENERGY CHARACTERISTICS OF PHASES AT THE AIR INTERFACE

Almaz Valiev, Irina Starovoitova, Alfred Suleymanov

Abstract


Introduction. The study of the adhesive strength formation mechanisms in polymer composites involves the deliberate selection of components to facilitate their joint action in transferring stresses from the fibers to the binder through the phase interface. The strength of the adhesive interaction between components can be expressed through their energy characteristics, provided technological and other factors are ensured. Purpose of the study: The study aims to investigate the energy characteristics of hybrid polymer composite phases at the air interface. Methods: The optical method was used to capture micrographs of wetting fibers of different nature by liquids, based on which contact angles were determined. Tensile tests of fibers were conducted, and thermal analysis of fibers was performed using a synchronous thermal analyzer. The surface tension of epoxy resin and the epoxy resin / hardener system was determined using a tensiometer. Results: The method for determining surface energies of solids was upgraded. The upgraded method makes it possible to determine the free surface energy of fibers of different nature and the surface tension of the binder. The effect of oiling compositions (finishing agents) was quantitatively evaluated.

Keywords


composite, hybrid, adhesion, wetting, adhesion action, free surface energy

Full Text:

PDF

References


Danilov, V. E., Korolev, E. V., Ayzenshtadt, A. M., and Strokova, V. V. (2019). Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens–Wendt–Rabel–Kaelble. Stroitel’nye Materialy [Construction Materials], No. 11, pp. 66–72. DOI: 10.31659/0585-430X-2019-776-11-66-72.

Dupre, M. A. (1869). Théorie mécanique de la chaleur. Paris: Gauthier-Villars, 484 p.

Gulyaev, A. I., Medvedev, P. N., Sbitneva, S. V., and Petrov, A. A. (2019). Experimental research of "fiber-matrix" adhesion strength in carbon fiber epoxy/polysulphone composite. Aviation Materials and Technologies, No. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.

Gunyaev, G. M. (1977). Polycomponent high-modulus composites. Polymer Mechanics, Issue 5, pp. 685–692. DOI: 10.1007/BF00860318.

Hughes, J. D. H. (1991). The carbon fibre/epoxy interface—a review. Composites Science and Technology, Vol. 41, Issue 1, pp. 13–45. DOI: 10.1016/0266-3538(91)90050-Y.

Karzov, I. M., Alent’ev, A. Yu. Bogdanova, Yu. G., Kostina, Yu. V., and Shapagin, A. V. (2010). Influence of energy characteristics of the fiber-binder interface on polymer composite strength. Moscow University Chemistry Bulletin, Vol. 65, Issue 6, pp. 384–391. DOI: 10.3103/S0027131410060106.

Kayumov, R. A. and Shakirzyanov, F. R. (2021). Large deflections and stability of low-angle arches and panels during creep flow. In: Altenbach, H., Eremeyev, V. A., and Igumnov, L. A. (eds.). Multiscale Solid Mechanics. Advanced Structured Materials, Vol. 141. Cham: Springer, pp. 237–248. DOI: 10.1007/978-3-030-54928-2_18.

Khaskov, M. A., Zelenina, I. V., Sorokin, O. Yu., and Gulyaev, A. I. (2019). Ceramic interfacial coating on carbon fibers based on polycarbosilane and oligovinylsilazane. Glass Physics and Chemistry, Vol. 44, Issue 6, pp. 601–606. DOI: 10.1134/S108765961806010X.

Kim, J.-K. and Mai, Y.-W. (1998). Engineered interfaces in fiber reinforced composites. Oxford: Elsevier, 416 р.

Kramarev, D. V., Osipchik, V. S., Chalaya, N. M., Berezina, A. B., and Kolesnikov, A. V. (2017). Study of interfacial phenomena at the fiber–binder interface in imido-organoplastics. Plasticheskie Massy, No. 7–8, pp. 3–6. DOI: 10.35164/0554-2901-2017-7-8.

Lecomte du Nouy, P. (1925). An interfacial tensiometer for universal use. Journal of General Physiology, Vol. 7, Issue 5, pp. 625–633. DOI: 10.1085/jgp.7.5.625.

McCafferty, E. (2002). Acid-base effects in polymer adhesion at metal surfaces. Journal of Adhesion Science and Technology, Vol. 16, Issue 3, pp. 239–255. DOI: 10.1163/156856102317295478.

Mercier, C., Khelil, A., Al Mahmoud, F., Blin-Lacroix, J.-L., and Pamies, A. (2021). Experimental investigations of buckling behaviour of steel scaffolds. Structures, Vol. 33, pp. 433–450. DOI: 10.1016/J.ISTRUC.2021.04.045.

Nacharkina, A. V., Zelenina, I. V., Valueva, M. I., and Voronina, O. G. (2021). Influence of additional sizing of carbon fiber in producing volume-reinforced preforms on the properties of high-temperature carbon fiber. Scientific and Technical Journal “Proceedings of VIAM”, No. 1 (95), pp. 54–65. DOI: 10.18577/2307-6046-2021-0-1-54-65.

Owens, D. K. and Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, Vol. 13, Issue 8, pp. 1741–1747. DOI: 10.1002/app.1969.070130815.

Petrova, G. N. and Beider, E. Ya. (2016). Development and research of finishing compositions for thermoplastic carbon plastics. Scientific and Technical Journal “Proceedings of VIAM”, No. 12 (48), pp. 65–73. DOI: 10.18577/2307-6046-2016-0-12-9-9.

Shakhmurzova, K. T., Kurdanova, Zh. I., Kalmykova, G. Z., Slonov, A. L., Beev, A. A., and Khashirova, S. Yu. (2022). Surface modification of fiberglass with high temperature sizing agents. Proceedings of the Kabardino-Balkarian State University, Vol. XII, No. 2, pp. 67–74.

Skudra, A. M. and Bulavs, F. Ya. (1978). Structural theory of reinforced plastics. Riga: Zinatne, 192 p.

Starostina, I. A. and Stoyanov, O. V. (2010). Development of methods for the evaluation of the surface acid-base properties of polymeric materials. Bulletin of Kazan Technological University, No. 4, pp. 58–68.

Starostina, I. A., Stoyanov, O. V., Makhrova, N. V., and Deberdeev, R. Ya. (2011). Application of test polymer surfaces for the determination of free surface energy parameters. Doklady Akademii Nauk, Vol. 440, No. 1, pp. 64–66.

Starostina, I. A., Stoyanov, O. V., and Sokorova, N. V. (2013). Determination of free surface-energy parameters using a spatial method. Polymer Science Series D, Vol. 6, pp. 157–159. DOI: 10.1134/S1995421213020135.

Vann Oss, C. J., Chaudhury, M. K., and Good, R. J. (1989). The mechanism of phase separation of polymers in organic media—apolar and polar systems. Separation Science and Technology, Vol. 24, Issue 1–2, pp. 15–30. DOI: 10.1080/01496398908049748.

Wilhelmy, L. (1863). Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik und Chemie, Vol. 195, Issue 6, pp. 177–217. DOI: 10.1002/andp.18631950602.

Zhang, J. (2012). Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites. [online] Available at: https://tel.archives-ouvertes.fr/tel-01146459 [Date accessed: September 10, 2023].

Zheng, Y. and Guo, Z. (2021). Investigation of joint behavior of disk-lock and cuplok steel tubular scaffold. Journal of Constructional Steel Research, Vol. 177, 106415. DOI: 10.1016/J.JCSR.2020.106415.


Refbacks

  • There are currently no refbacks.




     

ISSN: 2500-0055