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Abstract
Introduction: In a 1754 publication, Discussion plus particulière de diverses manières d’elever de l’eau par le moyen des 
pompes avec le plus grand avantage (Very detailed explanation of the different methods of raising water through pumps 
with the greatest effectiveness), Leonhard Euler (1707–1783) made extensive use of the concept of mechanical power in 
estimates of the power needed to raise waters with piston pumps, by means of natural forces such as human and horse 
force, running waters, and windmills. Purpose of the study: We aimed to revisit this publication to show to the modern 
reader Euler’s pioneering approach in providing rational calculations of the power of natural forces needed to drive 
different machines to raise waters with piston pumps. Methods: After a brief historical review on the use of natural forces 
to drive machines and the evolution of the concept of mechanical power, the method employed was the examination and 
an annotated reproduction of the main formulation using Euler’s original notation and ways of scientific writing of the time. 
Discussion: We address the evolution of hydropower and wind power, particularly for the generation of electricity, and 
also show that despite of its much lower attractiveness, there have been some attempts in the use of human and animal 
power in developing countries, particularly in applications that do not require large and constant amounts of power inputs. 
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Introduction
The need of providing mechanical power to drive 

machines has been a pressing issue for humans 
since the earliest civilizations as it is still today. In 
classical antiquity, virtually all work was done by 
man-power or animal power. Water power was used 
for pumping and in ancient industrial processes 
but probably not much before the first century BC 
(Landels, 1978). The dates are uncertain, but it is said 
that as early as 1700 BC, Hammurabi used windmills 
for irrigation in the plains of Mesopotamia (Golding, 
1976). There is evidence that wind power was used in 
Afghanistan around 700 AD and by the Chinese back 
in 1200 AD (Golding, 1976). Harnessing water power 
and using it to drive machinery were apparently not 
explored until the early part of the first century BC. 
According to the geographer Strabo, a water-mill 
was built in the Pontus (near the modern Niksar, N. 
central Turkey) (Landels, 1978). The conceptions 
of these machines were probably transmitted and 
perfected from generation to generation. Certainly, 
there were virtually no guidelines to estimate the 
required inputs (force, work, and power) to achieve 
the desired outputs (flow rate, head, pressure, 
and efficiency); in other words, the technological 

knowledge as is known today was non-existent, and, 
perhaps, not even thought of.

It is argued (Landels, 1978) that the Mediterranean 
world, and particularly the Roman Empire, was 
dominated by the Greek culture, which might have 
had important effects on the scientific thought. This 
was characterized by a liking for stability, rest and 
permanence, and an opposing dislike of change 
and movement, which caused people to set a high 
value on the permanent and stable. As a result, their 
understanding of static conditions (e.g., hydrostatics) 
and mechanical problems not involving movement 
was acute, whereas their ideas on dynamics (e.g., 
ballistics) were incomplete and inaccurate. They 
spoke of velocities but hardly even began to study 
acceleration, which impaired the notion of inertia and 
kinetic energy.

The study of motion was also impaired by the lack 
of devices to measure short intervals of time, of the 
order of seconds. Moreover, philosophers of the time, 
such as Plato, and their followers adopted an anti-
physical attitude, exalting the “pure” and theoretical 
sciences (such as geometry and astronomy), looking 
down on any research that was mechanical, or which 
had practical applications (Landels, 1978).
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First Notions of Force, Work, and Power
It is possible to say that this state of affairs began 

to change with Galileo Galilei (1564–1642) and a 
mechanical treatise of his authorship, referred to by 
the author himself as Mechanics (Le mecaniche), 
which consisted of handwritten texts, copies of which 
obtained wide circulation in Europe in the first half 
of the 17th century, and eventually was published 
in 1634 in French by Marin Mersenne (1588–1648) 
under the title Les Mécaniques de Galilée, a year 
after the conviction of Galileo by the Holy Inquisition. 
Along with Galileo, he referred to mechanics in 
the plural to designate the part concerned with 
machines, as distinct from the denomination in the 
singular — mechanic — understood as the general 
theory for the conditions of rest (equilibrium) and 
natural motion of physical bodies. 

According to Mariconda (2008), the original 
manuscript by Galileo was considered lost. 
Nonetheless, two copies appeared, one in a 
short version and another in a long version, the 
former written in 1593/1594, and the latter written 
in 1601/1602. Based on secondary sources that 
examined these publications, Mariconda showed that 
the basic explanation scheme employed by Galileo 
consists in showing that, as for the machines known 
at Galileo’s time (lever, pulley, wedge, screw, inclined 
plane, and capstan), all can be reduced to a system 
of simple levers. The lever principle is extended 
from the static to the dynamic case, and the effect 
of velocity on the motive power is considered, where 
the motive power is the product of the weight (force) 
of a body and its velocity, taken by Galileo as a 
measure of the power being used. 

Galileo’s approach differed from the works of his 
predecessors in his strategy of introducing idealized 
conditions with the basic objective of eliminating 
friction, in order to think of an ideal machine. Galileo’s 
predecessors knew that friction reduces performance 
(yield) of a machine, but none of them were led to, 
or were able to, think about the following problem: 
what would happen with a perfect machine? Or, 
more simply, what would happen with a frictionless 
machine?

Thus, according to Galileo’s conception of 
machines, they all have the function of transmitting 
and applying force or power as effectively as 
possible. In this conception, it is possible to develop 
a quantitative evaluation for the performance of 
machines in terms of the product of the driving force 
used and speed, which corresponds to an important 
step towards the quantification of the power of 
a machine and opens the way for the elaboration 

of concepts such as work and energy, which are 
fundamental for the development of modern 
engineering.

It is generally accepted that the concept of 
force was first formally introduced into physics with 
Newton’s second law of motion. Similar to “quantity 
of matter”, the product of density and volume, 
Newton (1643–1727) proposed “quantity of motion” 
as a measure of the same, arising from velocity and 
quantity of matter conjointly (mv).

Since the quantity of motion is a scalar, Newton’s 
definition implicitly treated velocity v as scalar speed 
rather than vector velocity v



. Hence the quantity 
of motion is not precisely identical to the modern 
concept of momentum, which is a vector quantity 
given by mv



. Based on the scalar quantification of 
“motion”, Newton had to acknowledge that, contrary 
to the teachings of Descartes, the “quantity of 
motion” is not conserved.

The concept of work (force times distance), and 
power (work per unit of time) may have been first 
introduced by Descartes (1596–1650) as indicated 
by Belidora, in his famous Architecture Hydraulique 
(de Belidor, 1819). In the first chapter (§ 85), the 
concept was discussed by Belidor, with the subtitle 
“Descartes Principle for Mechanics”, and it is 
presented as follows (Fig. 1): “… a body only has 
force as long as it is in motion, and this force will be 
all the greater when it will have, at the same time, 
more mass and more speed, as a rectangle will have 
more surface when it has a larger base and a greater 
height. Or, since this surface is expressed by the 
product of these two dimensions, similar is the force 
of a body, which is also called its ‘quantity of motion’, 
and should be expressed by the product of its mass 
and its speed…”

In § 89 Belidor generalized the Descartes 
Principle considering power (P = Fv) rather than 
quantity of motion (mv), to read: “… in the state of 
equilibrium, the force and the weight will be as the 
reciprocal ratio of their speed; and, therefore, the 
quantity of motion of the force will be equal to that 
of the weight …” This translates to the equality of 
powers: Pin = Pout. In the subsequent paragraphs, 
de Belidor applied this principle to several simple 
mechanical machines such as: levers, pulleys, 
cranks, etc. Fig. 2 is an image of an ancient crane, 
composed of several mechanical elements for power 
conversion.

In § 99 Belidor exemplified the mechanical 
principle by applying it to a hoisting machine: “… a 
force of 25 livresb may aid a machine to hoist a weight 
of 500 livres, if the weight is only one foot of a way in 

a Bernard Forest de Belidor (1697–1761), a military engineer, taught mathematics at the artillery school at La Fère where he authored    
several textbooks. Seeking to introduce mathematics into practical engineering, he wrote La science des ingénieurs (1729) and Architec-
ture hydraulique (1737–1739). 
b The livre poids de marc or livre de Paris was equivalent to about 489.5 grams and was used between the 1350s and the late 18th century.
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the time that the force will make 20 (feet): or else, a 
weight of 50 livres will raise a weight of 500 livres, if 
the former has a velocity ten times greater than that 
of the 500 livres weight …”

However, Claude-Louis Navier (1785–1836), 
the reviewer of the new edition of Architecture 
Hydrauliquec , an academic at the École Nationale 
des Ponts et Chaussées and École Polytechnique, 
in a footnote following this paragraph, reproached 
de Belidor for his interpretation of the Descartes 
Principle and rephrased it in more rigorous terms by 
substituting speeds for virtual velocities, followed by 
other considerations. Nonetheless, de Belidor recast 
it in terms of power, perhaps because he was more 
interested in the practical applications of the  principle.

Definition of power: if a constant force F is 
applied throughout a distance d, the work done T is 
defined as T=F∙d. In turn, the power P is defined as 

the work done per unit of time, P
T
t

F d
t

F v� �
�

� � , 
where v is the speed. For a distance d equal to one 

Fig. 1. de Belidor’s illustration of the Descartes 
Principle for Mechanics (de Belidor, 1819)

Fig. 2. Ancient crane hoisting a load with the aid 
of the human power applied to the paddles of the 

turning wheel (source: https://www.gruasyaparejos.
com/en/construction-crane/ancient-crane/)

с  In the 1810s, de Belidor’s two works, La science des ingénieurs (1729) and Architecture hydraulique (1737–1739) were issued in revised 
and expanded editions by Navier, who had been recruited by the École des Ponts et Chaussées to edit the works of his great-uncle, the 
great French engineer Émiland Gauthey. By 1813 Navier completed this task and also issued a revised and expanded edition of Belidor’s 
La science des ingénieurs. Navier’s success as an editor of Belidor’s Science des ingénieurs and Gauthey’s works led their publisher, 
Firmin Didot, to invite him to prepare a revised edition of Belidor’s Architecture hydraulique. Navier sought to correct the errors found in this 
work and give it a mathematical sophistication that would make it useful to the graduates of the École Polytechnique. Navier’s contributions 
to the Architecture hydraulique are confined to the first volume, which contains notes and commentary equal or surpassing the original 
text in length. The remaining volumes consist of reissues, with new titles dated 1810, of the edition published in 1780 (text adopted from 
Jeremy Norman’s Historyofscience.com, https://www.jnorman.com/cgi-bin/hss/38462.html, accessed on March 9, 2017).
d  Until the mid-18th century, most demanding labor required horses. With the advent of the steam engine, machinery began to replace 
horses for various tasks. But many people resisted this change; they were skeptical about the efficiency of the new machines. Inventor 
James Watt (1736–1819) knew this and capitalized on it when marketing his improved steam engine. Watt noticed people’s reticence to 
adopt the new technology and decided to make a measurement comparison that potential buyers could relate to: horses. But instead of 
figuring out exactly how much power a horse really produced, he estimated it. Watt guessed that a pony could lift an average of 220 lbf 
(pound-force) 100 ft. per minute (220 lbf x 100 ft./min. = 22,000 lbf x ft./min.). From there, he extrapolated that a horse could lift 50 per-
cent more than a pony, bringing the estimated power of a horse, or horsepower, to 33,000 lbf x ft./min = 550 lbf x ft./s. Regardless of how 
accurate his measurements actually were (some neigh-sayers disagreed with them because no horse could sustain that level of effort for 
an extended period of time), the comparison was an effective one, and the term stuck (text adopted from “The History of Horsepower” by 
Paul Humphreys, https://www.thecompressedairblog.com/the-history-of-horsepower, accessed on March 10, 2021).

meter, a force F equal to one newton, and for a unit 
of time of one second, the power is equal to one watt: 
1W=1N∙1 m/s.

Another common and traditional measure 
of power is the horsepower (hp)d, comparing to 
the power of a horse (Fig.  3); one mechanical 
horsepower equals about 735.5 watts. This means 
that a horse is capable of raising a load of 75 kg 
(165 lbf) to a height of 1 m (3.28 ft) in 1 s. Since the 
normal gravity is equal to 9.80665 m/s2, then a force 
of 735.5 N is necessary to raise a mass of 75 kg, 
which at a velocity of 1 m/s, would require a power 
of  foot-pounds per second (FPS).

When considering human-powered equipment, a 
healthy human can produce about 1.2 hp (0.89 kW) 
“briefly” and sustain about 0.1  hp (0.075  kW) 
“indefinitely”. 
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Fig. 3. One horsepower is needed to lift 75 kilograms (of water) 
by 1 meter in 1 second (adopted from  

https://aces.nmsu.edu/pubs/_m/M227/welcome.html)

Euler’s Calculations of Mechanical Power 
from “Natural Forces”

Leonhard Euler (1707–1783) was, perhaps, the 
first to formally introduce mechanical power as a 
measure of the capacity of natural forces to drive 
piston pumps by means of humans, horses, running 
waters, and windmills (Euler, 1754). This is a most 
remarkable publication from the engineering point 
of view, because Euler was capable of providing 
detailed calculations on how to design systems to 
extract power from these natural sources, which can 
well serve as an introductory historic chapter to any 
textbook on the evolution of machinery for raising 
waters.

Euler began by invoking his previous memoir 
on raising waters with piston pumps (Euler, 1754b), 
in which he had developed the analytical tools 
necessary for determining the pressures that the 
piping system should sustain according to the 
required raising height and volume flow rate. From 
these, and from the pump dimensions, he was able 
to determine the piston velocity and the effort exerted 
by the pump’s piston per second (equal to the work 
done per second during the pump’s piston motion, or 
the supplied power).

Fig.  4 shows a conception of a pair of piston 
pumps that operate out of phase in their delivery and 
aspiration cycles, in order to provide a continuous 
flow of water through the piping system. In this figure,  
F is the force applied to the lever that is supposed to 
move with a velocity a, and K is the resulting force 
applied to the piston that is supposed to move with 
a velocity ζ, such that Kζ = Fa. The pumping system 
is supposed to have the following characteristics: 
piston diameter = a, piston excursion = b, diameter 
of the piping system = c, height of the reservoir = g, 
length of the pipe = l, cycling time of the piston = t, 
flow rate per hour = M, and pressure inside the pipe 
at the pump exit = p. 

Next, Euler wrote the following formulas, which he 
had obtained in his previous memoir (Euler, 1754b). 
For the cycling time of the piston: 

		

 (1)

for the flow rate: 
		

(2)

and for the pressure at the pump exit:
		

(3)

where the force K is given in cubic ft of water.
Euler also defined two additional parameters: 

the ratio of pressures λ, and the ratio of velocities i, 
which are written as follows:
		

(4)

		
(5)

and from this latter expression, the following relations 

hold: 
� � � �

2b
t

i
 and  t b i2 .

Setting the number of all pumps to be used = 2n, 
where n is the number of pairs of pumps, Euler then 
provided the following additional formulas:
		

(6)

for the piston diameter:
		

(7)

Fig. 4. A pair of piston pumps operating out of 
phase to provide a continuous flow of water 
through the piping system (Landels, 1978)
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for the force acting on the piston:
		

(8)

and for the piston velocity:
		

(9)

It will become clearer later that 1/ λ  is a measure 
of the system efficiency, which was extensively used 
by Euler for the optimization of the pumping system 
performance.

Man-power: by defining f as a force that a man 
is capable to deliver at rest and φ as the greatest 
velocity that a man can walk without too much 
fatigue, such that if a man has to walk at such 
velocity, he would be unable to exert any force, 
because all his efforts will be consumed through 
this course of walk. If ω is a velocity smaller than φ 
and ρ is the force that a man can proceed with the 
velocity ω, then, the relation between the forces f 
and ρ, can be obtained from the velocities φ and ω, 
by considering the following conditions:

1. If ω = 0, then ρ = f,
2. If ω = φ, , then ρ = 0.

Euler then proposed the following ad-hoc 
analytical expression for ρ:
		

(10)

To find the velocity that would correspond to the 
maximum deliverable power (which Euler called 
the greatest “moment of motion”), he proposed 
the differentiation with respect to ω of the following 
expression (which corresponds to the deliverable 
power):
		

(11)

under the supposition that the velocity ω is the 

variable that should be maximized, ,1
3

4
9

p f   

and then the maximum deliverable power is 
4
27
f .

Considering that a man at rest can exert an effort 
of 60 lbf, and that without too much fatigue, he is 
able to follow a path at 6 ft per second, then f = 60 
lbf and  φ = 6 ft. Then, to apply most advantageously 
the force of a man to a given machine, it will be 
necessary for him to march at 2 ft per second, 
and the force will assume the following value: 

67 lblb4
9
60 26  

e
. Reducing this force to the weight 

of a volume of water, at a ratio of 70 lbf per cubic ft, 
this force will be equivalent to 8

21
 cubic ft (of water). 

Therefore, we can say that the force of a man is 
applied in the most advantageous way with a velocity 

of 2 ft per second, carrying a weight of 
3
8

3ft  of water.
If the number of men that one wishes to employ in 

a machine is set = m, and these men put the machine 
into motion with a velocity of 2 ft per second, their 
force (= F) will be F m

=
3

8
 cubic ft of water, and the 

force that drives each pump will be K m
in

=
3

8
 cubic ft 

of water. For a velocity of 2 ft per second, �� 2
, and the power of this force will be F m3

4
. As a 

consequence, according to Eq. 2, the amount of 
water that will be raised in one hour will be mM

g
2700 . 

Since a portion of that force will be used to overcome 
friction and raise the pistons to admit water by 
suction, the quantity M will be a little less, or it will be 
necessary to employ a few more men to overcome 
the obstacles. 

Substituting F m2 3
2  into Eq. 6, we obtain the 

following:
		

(12)

Based on Eq. 7, we also obtain the diameter a of 
each piston:
		

(13)

According to Eq. 4, the pressure that the pipe 
should sustain at its lower end ρ will be equivalent 
to the height λg.

Example of application: by putting m = 1 (one 

man driving pumps), i 6
2

3 , n = 1, (one pair 
of pumps), and g = 30 ft in Eq. (13), we will obtain 

.0 053
2a . By assuming b = 1 ft , � �c ft in1

12
1 , and l = 45 

ft, we will obtain λ = 2.20 and a = 0.155 ft. Based on 
Eq. 2, the flow rate will be M = 41 ft3/h, and based 
on Eq. 4, the pressure that the pipe should sustain 
at the pump exit will be ρ = λg = 66 ft. These results 
show that a man driving a pair of pumps, such as 
that shown in Fig. 4, is capable of rising 41 ft3 of 
water per hour to a height of 30 ft through a pipe 
with a diameter of 1 in and 45 ft in length. The piston 
of each pump will have a diameter of 0.155 ft, each 
running into a cylinder of 1 ft in height. Of course, 
these results do not take into account the friction 
between the piston and the walls of the cylinders, 

e These values would give approximately 0.1 hp (0.075 kW), which is the same value that has been proposed for the human power as 
mentioned earlier.
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the friction of the water flowing through the pipe, and 
the power needed to raise the pistons to admit water 
by suction.

Horsepower: considering that for a horse f=420lbt 
and φ=12 ft, and based on the same power model 
established for a man (Eqs. 10 and 11), Euler found 
that the force of a horse is applied in the most 
advantageous way, with a velocity of 4 ft/s, carrying 

a weight 2
2
3

3ft of of water (186.5 lbf).
Then, for a horse, the corresponding formula for  

λ (Eq. 6) is as follows: 
	

(14)

 
and, from Eq. 7, the diameter of each piston a will be 
as follows:
		

(15)

Running water power: the points A, B, C, D, 
E, etc. along the circumference of the water wheel 
with the center at 0 are considered (Fig. 5), which 
is garnished with paddles Aa, Bb, Cc, etc receiving 
successive impulses of the running water lm: such 
that the water wheel by its motion drives the machine 
under consideration. Then, m is set as the center of 
the efforts of the water on the paddle Aa, which will 
fall roughly in its middle.

Let us set: the radius of the water wheel 0m=r, the 
height of the paddle Aa=h, the length of the paddles, 
or the width of the water wheel = f , and the surface of 
each paddle = fh velocity of the water wheel at point 
m = v in ft per second, velocity of the running water 
lm = e in ft per second.

Let us also consider that the paddle Aa is in the 
vertical position, and that the water hits only this 
paddle, such that the neighboring paddles Hh, Bb 
are above the free surface of the river.

Based on these def initions, the relative 
velocity of the water on the paddle will be equal to  
(e – v)ft/s, which is due to the height u. Considering 
that a weight falling from a height of 15.625 ft gives a 

velocity of 31.25 ft/s, then 
.
.

e v
u

2 231 25
15 625, from which 

g de Belidor himself, in the Avant-Propos of the 1739 edition of Architecture Hydraulique (Vol. 2), reported on a call to the Notre-Dame 
facility: “… Messrs. The Provost of Merchants & Aldermen of the City of Paris having learned that I had commented on faults in the pumps 
of the machine applied to the bridge Notre-Dame, which supplies water from the Seine river to the greater number of public fountains, 
made me the honor of inviting me in 1737 to communicate to them my views on how to rectify this machine, in order to make it capable of 
a bigger product. As in working on the project that we carried out, it happened to me make several new discoveries on the movement of 
waters and the perfection of machines suitable for raising them, I have believed it necessary to suspend the printing of this Volume in order 
to infer them, and at the same time make essential corrections in several places, based on a few hydraulic principles, commonly received, 
the error of which I saw, as we can convince ourselves…”

we have that . .
15 625

31 25 62 5
2
125

2

2

2
2e v e v

e v . The 
force of the water on this paddle will be equal to the 

weight of a volume of water 
2
125

2fh e v , from which 

the power (“moment of motion”) is 
2
125

2fhv e v ; and 

this will be as high as possible if v e�
1
3 . Therefore, to 

take this advantage, it will be necessary to arrange 
the machine in such a way that the wheel turns with 
such motion that the velocity at the center  of the 
paddles is equal to one-third of the velocity of the 
running water; and then the force of the water that 

is applied to the wheel will be � �
4
9
2
125

8
1125

2
2e fh e fh.

If our machine is set into motion by such a 

water wheel, we will have the force 
F e fh�

8
1125

2

and the velocity of the wheel at a distance 0m=r 

will be �
1
3
e, which is the value of a, that is a �

1
3
e 

and F e fh8
3375

3
. Therefore, the amount of water 

that could be raised in one hour by this machine is 
M

g
e fh e fh

g
8 3600
3375

123
15

3
3

.
Then, for the water wheel, the corresponding 

formulas for λ  and the diameter of the piston a are 
as follows: 
		   

(16)

		

(17)

According to Euler, a machine of this kind was 
put into practice at the Notre-Dame bridge in Paris 
(Fig. 6) to raise water to a height of 81 ft above the 
level of the Seine River. It was composed of two 
water wheels pushed by the flow of the river, each 
one driving a separate equipment.

Euler then commented that these wheels are 
similar to the one considered here, which according 
to a description by M. de Belidorg  had the height h 
of the paddles equal to 3 ft and their width f equal 

2 2
1 1 3.4773  ,
2 4
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bc g

λ
 

= + + 
 

3.3952 .ma
ingλ

=
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ie fhl
bc g

λ
 
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 

22 .
221

e fha
ingλ

=



9

Fig. 5. Water wheel (Euler, 1754)

to 18 ft. The velocity of the river e was estimated as 
9 ft/s, and g=81 ft, which was equal to the length of 
the pipe l , because it was mounted vertically. Euler 
then argued that this machine would be capable of 

delivering the amount of water M f /t h4147 3
, if 

“well managed”, and twice this value considering 
both equipments, which increases as the value of λ 
is reduced.

However, according to Euler, the system proved to 
be capable to raise only 2400 ft3/h, which de Belidor 
himself recognized that it was too little, and among 
other considerations, he attributed this result to the 
slow motion of the wheels, because just one-third 
of the paddles was immersed into the river, and not 
up to their centers. Corrections in the valves were 
also considered to reduce the flow resistance, and 
by these corrections, Belidor expected to more than 
double the output of the system.

The value λ of  estimated by Euler for this system, 

considering both equipments, was 
8294
2400

3 1
2 , 

and, therefore, the pipe had to resist a pressure 
corresponding to more than three times the water 
column. Euler then concluded that the machine was 
highly defective in delivering much less water than 
it was desired, and as a consequence, the pressure 
inside the pipe increased considerably, which could 
cause the “destruction of the machine”.

Here, it is possible to consider that 1/λ 
is a measure of the system efficiency; then  

% / %1 100 1 3 1
2
100 28 6

, which seems 
to be a reasonable estimate for the efficiency of a 
system of this sort.

Next, Euler proposed to improve the performance 
of the machine by reducing the value of λ as much as 
possible. His strategy was to increase the number of 
cycles for each complete turn of the wheel. He began 
by calculating the value of λ for e = 9, f = 18, h =3 
l = g = 81 and by considering that for each turn of an 
8.5 ft radius wheel (with a peripheral velocity of 3 ft/s), 
each piston would accomplish µ cycles per turn of the 
wheel, giving then the following result:
		

(18)

By this approach, the value of λ for c � 2 would 
be reduced to 1.03 for µ = 6 and to 1.002 for µ = 4. 
According to the machine description, the piston 
excursion b=1.5 ft, which would result in a flow rate 
of 8052 ft3/h for both wheels for µ = 6. Euler then 
considered that this output would be less, about 
7200 ft3/h, on account of the force required to 
overcome friction but, nonetheless, would triple the 
current output of the machine. 

Euler finished this section by providing general 
design formulas for pumping water by means of 

Fig. 6. Pompe Notre-Dame (Notre-Dame Pump) originally 
built in 1670 and reconstructed in 1708. This pump raised 

waters from the Seine into many public fountains and 
monuments, and it is said that it would allow the fountains 
to shoot water from 12 up to 50 feet in the air. Here shown 

in 1861, the pump looks rather destitute and neglected 
next to the Pont-Notre Dame. The Pont underwent much 
renovation during the 19th century, while the pump itself 

remained virtually untouched (source: https://fr.wikipedia.
org/wiki/Fichier:Pompe_Notre-Dame,_vue_prise_de_la_

vo%C3%BBte_du_quai_de_G%C3%AAvres_en_1861.jpg)

Fig. 7. Geometrical elements of the sail 
of a windmill (Euler, 1754)
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water wheels, by substituting i in Eqs. 16 and 17 

with �
�
�
b
r . This substitution is based on an ad-hoc 

assumption of the wheel turning with a peripheral 
velocity equal to one-third of the velocity of the 
river. However, Euler omitted the conditions on how 
to make the wheel to turn at this desired velocity. 
This would require a more complex and detailed 
calculation of the inertia of the system, including 
the mechanical characteristics of the water wheel 
itself, and other considerations such as friction (fluid 
and mechanical), which Euler was unable or had no 
desire to establish at that time. 

Windmill power: Fig. 7 shows a view 
perpendicular to the keel of the sail of a windmill, 
where MLM is a section of the sail, the point  L 
belongs to the keel, and the line LB represents the 
direction of the motion of point L. It is clear that the 
wind direction is in the same plane and that it is 
perpendicular to the line LB. The width of the sail 
MM = y, the inclination of the wind or angle DL̂N = φ, 
the wind velocity DL = e , and the velocity of the point  
L of the sail LF = v; and since the sail “escapes” in 
part from the action of the wind, then one finds from 
the rules of mechanics that the effect would be the 
same if the wind is expressed by the diagonal GL, 
falling into the same direction GL when the sail is 
considered at rest.

The force of the wind on the line MM will 
be =GL2∙sin2 GLM∙y, which Euler showed that it can be 
written as =y(e sinφ-v cosφ )2, and if the letters  e and v 
are given in ft/s, this force will be equal to the weight 

of a volume of air, and then
in cos2

125
2y e v
.  

But since air is about 800 times lighter that water, 
this force will be reduced to a mass of water whose 

volume in cos1
50000

2y e v  in feet square, 
and assuming the width of the sail MM = y is also 
expressed in feet, then, since we have considered it 
to be a line, the effect of one dimension out of three 
is still missing.

Since this force is in the direction LN, its 
component, which drives the line MM in the direction 

of the motion LB will be � �� �y e vcos
sin cos

�
� �

50000

2

, 
and if we call the infinitesimal width of this line 
dx, then the infinitesimal resultant force that 
makes the sail to turn in the direction LB will  

be 
� �� �ydx e v ftcos

sin cos
�

� �
50000

2 3

of water.
Fig. 8 is the frontal view of the sail OAABB of a 

windmill, and Fig. 9 is an image of a real windmill, 
showing the elements of the sail considered in Fig. 7.

In these figures, 0D is the axis around which 
the sail turns, such that the sail falls into the wind 
direction. Here, 0CD = f  is the sail span, and OL = x is 
any section along the span, where the width MLM=y, 
and where the inclination of the wind direction over 

the element MMmm is =φ. The velocity at the tip D of 
the sail will be set as u, and since u:f=v:x, then the 

velocity of point L will be 
v xu

f
=

; therefore, the wind 
force over the element MMmm=ydx in the direction of 

the motion will be � �
�

�
�

�

�
�

ydx e xu
f

tfcos
sin cos

�
� �

50000

2

3

 of water, 
where e is the wind velocity in ft/s. This element of 

force, when multiplied by the velocity 
xu
f , will give 

the element of the moment of motion for the force 
(element of power) of the wind over the sail, which 

will be � �
�

�
�

�

�
�

xuydx
f

e xu
f

cos
sin cos

�
� �

50000

2

.

Since, ordinarily, the angle φ is the same 
over the entire span of the sail, and assuming 
that the sail has the same width AA=BB=h, 
and because y=h, the element of the moment 
of motion (element of power) will be given by 

hu
f
xdx e eux

f
sin u x

f
cos si cos cos

50000
22 2

2 2

2
2

,
which after integration gives 
hu

f
e x eux

f
sin u x

f
Ccos si cos cos

50000
1
2

2
3 4

2 2 2
3 2 4

2
2

.
The constant C will be found by setting x=OC, for 
which the integral vanishes. Then, for OC=k , 

.

Let us set x=OD=f, and the moment of motion 
(power) over the entire sail will be given by

hu
f

e f k eu
f
f k sin

u
f

f

cos
si

cos50000

1
2

2
3

4

2 2 2 2 3 3

2

2
4 k 4 2cos

 , 
and if the windmill is equipped with four of such sails, 
the moment of motion for the force (power) of the 
wind will be given by the following:

C e k euk
f
sin u k

f
C1

2
2
3 4

2 2 2
3 2 4

2
2si cos cos

     

(19)

Upon differentiation of Eq. 19, Euler then found 
the maximum velocity that the sails should turn at 
their extremities D :

(20)

( )

( )

( )

2 2 2 2

3 3

2
4 4 2

2

1 sin
2

cos 2  cos .
12500 3

cos
4

e f k

hu euF f k sin
f f

u f k
f

ϕ

ϕ ϕ ϕ

ϕ

 
 − −
 
 

∝= − + 
 
 
 − 
 

( )

( ) ( )3 3

4 3 2 2
4 4

3 4

8
tan ,10 20 849

20 10

f k f k
efu f f f kf k

fk k

ϕ
 − −
 
 = + + +−  
 + 


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Fig. 8. Frontal view of the sail of a windmill (Euler, 1754)

Fig. 9. Image of a real windmill, showing elements of the sail 
(without the sail cloth) considered in Fig. 8 (adapted from  

https://www.conserve-energy-future.com/how-windmills-work.php)

where the minus sign before the radical should be 
chosen for the maximum motion to be achieved.

Since the distance OC=k can be chosen as small 
as possible, then it is allowed to consider k=0 to 

obtain ( )tan 8 10
9

eu ϕ
=  . By setting 

( )8 10

9
δ=



,                            

such that tanu eδ ϕ= , from Eqs. 19 and 20, the 
moment of motion for the total force (total power) of 
the wind will be given by the following:
		

 (21)

Whereas the maximum motion will be obtained 
with the minus sign before the radical, giving a 

t ip velocity tan 0.537525 tanu e eδ ϕ ϕ= = , 
and as Eq. 21 shows, the maximum total power will 
be obtained, instead, with the plus sign before the 
radical, which is then given by the following:

(22)

It is seen that the maximum action of the wind 
would be obtained by setting φ as a right angle; 
however, this would be unfeasible because the force 
F will be zero, since it varies with cos φ, and ∝  will 
go to infinite, since u varies with tan φ. Next, Euler 
provided design formulas for u and F∝  for three 
values of φ , 45°, 55°, and 60°.

Finally, Euler considered the case where φ =54°, 45', 
tan 2ϕ = , giving a tip velocity u=0.76018, resulting 
in one revolution of the sails every  

seconds. In the case where the windmill is driving 
piston pumps to raise water, and considering that 
each piston would accomplish μ cycles per turn of 

8.2654 f t
e
=

i be
f

�
�

0 24197. �2 8 2654b
i

t f
e�

� �
.

�
the sails                               ,                           we 
obtain .

From these, it is possible to write the following:
	  		

(23)

and

	 5.2617 .f Fa
nbegλµ

⋅ ∝
= 	 (24)

Considering that from Eq.  22, 
           

, 
then, from Eqs. 23 and 24 we have the following:
		

(25)

and
		  (26)

From these expressions, it is then possible 
to determine the piston diameter = a, the piston 
excursion = b, the diameter of the piping system = c, 
and the number of cycles per turn of the sails μ, such 
that the value of λ becomes as small as possible. 
Not only the pressure at the exit of the pump, which 
is = λg, will be the smallest, but also the quantity of 
water that will be raised, which is given by Eq. 2 as 

M F
g

ft h e fh
g
ft h3600 3600

199743
3

3
3

, will 
be the largest. Or else: 
		

(27)

bearing in mind that e  is the velocity of wind, f is 
the span of the sails, and h is their width, and that 

F e fh
��

3

199743
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the sails should turn one revolution in 8.2654 f
e  

seconds.
The Windmill at Sanssouci: as an example of 

application of the above formulation for windmills 
driving piston pumps, let us consider a windmill that, 
supposedly, was used to raise waters at Sanssouci, 
which was examined in the paper by Eckert (2002): 
“… Pumps, driven by a windmill, should raise the 
water of the Havel River to an elevated reservoir. This 
proposal was executed; it involved the construction 
of a water reservoir on top of a hill 150 feet above 
the river level, with a windmill-driven water pump 
half-way between the river and the reservoir. The 
water had to be guided by a canal from the river to 
the site of the pump station, from where it would 
be pumped through pipes up the hill and into the 
reservoir. … Construction began in the summer of 
1748. The canal from the Havel River to the pump 
station was finished by November. The windmill 
and the pumps were finished by the end of the year. 
The mechanism used to transmit the motion of the 
windmill to the pumps was described as clumsy, but it 
seemed to work. The pumps also were connected to 
a mechanism that could be set into motion by horses 
(Göpelwerk) if there were no wind…”

In Euler’s publication (Euler, 1754b), there is no 
description on the characteristics of the pumps, 
neither on the windmill at Sanssouci, because, as 
a matter of fact, this particular system was never 
directly mentioned in this publication, although, as 
commented above, it was certainly motivated by 
Euler’s involvement with this water park in 1749. 
However, as far as the characteristics of the pump 
are concerned, and for the sake of the present 
exercise, we can consider the pump characteristics 
given by Euler in an example of application at the end 
of Euler’s publication (Euler, 1754b) itself: the piston 

pump diameter 4  
3

a ft=
 
, and the piston excursion

b = 4 ft. Then, let us assume that n = 1 (one pair of 
pumps), and that each pump completes four cycles 
per turn of the sails, then μ =4. 

Some information about the piping system at 
Sanssouci was also reported by Eckert (2002) as 
follows: “… at the first system trial, by 1749, the 
wooden piping system burst at the lower end, … 
eventually, by 1753, these were replaced by lead 

tubes with an inner diameter
1 
3

c ft= …” In this same

publication, there are indications that the length of 
the piping system was (approximately) l = 8000 ft. 

No information could be found on the 
characteristics of the windmills at Sanssouci; just a 

brief comment by Eckert (2002) that, by 1753: “… a 
second windmill was constructed at a different site to 
raise water to the reservoir independently of the first 
one, but it never seems to have worked properly…” 
Nonetheless, to put some reality into this exercise, 
it is possible to guess some information from the 
image of the windmill shown in Fig. 9: the span of 
the sails  f = 50 ft, the width of the sails h= 12 ft. Wind 
speed e=25 ft/s (assumed), we obtain one revolution 

in                                             seconds, or 3.63 RPM.
 
Then, from Eq. 25 we have the following:

4

2 2

4

2
2

1 1  
2 4 10128960

1 1 4 25 12  8000 2.98,
2 4 110128960 150

3

e hl
c g

µλ
 

= + + = 
 

 
 

⋅ ⋅ + + =
  ⋅  

 

⋅



giving a system efficiency of 1/ 33.6%λ = .
From Eq. 27, the flow rate is as follows:

3 3 325 50 12 378 .
55.5 55.5 2.98 150

e fh ftM
g hλ

 ⋅
= = =

⋅ 

⋅
 ⋅ 

The value of λ = 2.98 shows that to raise the 
water to a height of 150 ft, the pressure that is 
developed at the lower end of the pipeline (pump 
exit) p = λg = 447ft. However, a common assumption 
by the fontainiers and hydraulic engineers at the 
time was to consider that the necessary pressure 
developed by the pump would be equivalent to the 
height of the reservoir, which, as pointed out by 
Euler, was obviously incorrect. The consequence of 
not recognizing these high pressures was certainly 
the main cause of failure of the wooden pipelines at 
Sanssouci, as reported by Eckert (2002). 

As far as the performance of the system is 
concerned, the following remarks by Eckert (2002) 
speak for themselves: “… By the spring of 1754, an 
abundance of snow and rain together with the water-
raising machine (described as “miserably slow”) 
produced some tangible results. On Good Friday 
1754, with a half-filled reservoir, the King was given 
a demonstration. But that day it was windy and the 
main fountain rose to only about half the height that 
the King had expected [100 ft]– and after an hour, 
the reservoir was empty…” This was not surprising 
because the output of only 378 ( ft3 / h) = 10.7 (m3/h)
as estimated above would not be sufficient for the 
grandeur of the water park wished by King Frederickh.

h A steam-driven water pump was inaugurated in 1842 to supply water from the Havel River to the Sanssouci Palace, which in 2017 was 
nominated a “Civil Engineering Historical Landmark in Germany”. 

8 2654 8 2654
50

25
16 53. . .

f
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Using Natural Sources of Power Today
The natural sources of power considered here 

are still in much use nowadays (Gasch and Twele, 
2016). For instance, the power of running waters, or 
hydropower as is known today, is widely employed 
in hydroelectricity, or hydroelectric power, where 
electricity is produced from hydropower. In 2015, 
hydropower generated 16.6% of the world’s total 
electricity and 70% of all renewable electricity and 
was expected to increase by about 3.1% each year 
for the next 25 years. Hydropower is produced in 150 
countries, with the Asia-Pacific region generating 
33% of global hydropower in 2013. China is the 
largest hydroelectricity producer, with 920 TWh of 
production in 2013, representing 16.9% of domestic 
electricity use (Atkins, 2003) (Hydroelectricity (n.d.). 
In: Wikipedia. Accessed March 21, 2021, https://
en.wikipedia.org/wiki/Hydroelectricity).

Different classes of hydraulic turbines for 
hydroelectric power plants can be selected according 
to the available head and flow rate, and due to the 
advances in the design of these machineries, they 
can operate with efficiencies up to 90%.

Wind power, or wind energy, is the use of wind 
to provide mechanical power through wind turbines 
to turn electric generators for electrical power. Wind 
power is a popular sustainable, renewable source 
of power that has a much smaller impact on the 
environment compared to burning fossil fuels. Wind 
farms consist of many individual wind turbines, which 
are connected to the electric power transmission 
network (Bennert and Werner, 1989). Onshore 
wind is an inexpensive source of electric power, 
competitive with or in many places cheaper than coal 
or gas plants. Onshore wind farms have a greater 
visual impact on the landscape than other power 
stations, as they need to be spread over more land 
and need to be built away from dense population (von 
König, 1976). Offshore wind is steadier and stronger 
than on land, and offshore farms have less visual 
impact, but construction and maintenance costs are 
significantly higher. Small onshore wind farms can 
feed some energy into the grid or provide power 
to isolated off-grid locations (Wind power (n.d.). 
In: Wikipedia. Accessed March 22, 2021, https://
en.wikipedia.org/wiki/Wind_power). 

A wind turbine is a machine that converts kinetic 
energy from the wind into electricity. The blades of 
a wind turbine turn between 13 and 20 revolutions 
per minute, depending on their technology, at a 
constant or variable velocity, where the velocity 
of the rotor varies in relation to the velocity of the 
wind in order to reach a greater efficiency. The wind 
turbine is automatically oriented to take maximum 
advantage of the kinetic energy of the wind, from the 
data registered by the vane and anemometer that are 
installed at the top. The nacelle turns around a crown 
located at the end of the tower. The wind makes the 
blades turn, which start to move with wind speeds 

of around 3.5 m/s and provide maximum power with 
a wind speed 11 m/s. With very strong winds (25 
m/s), the blades are feathered and the wind turbine 
slows down in order to prevent excessive voltages. 
The rotor (unit of three blades set in the hub) turns 
a slow axis that is connected to a gear box that lifts 
the turning velocity from 13 to 1,500 revolutions per 
minute. The gearbox transfers its energy through a 
fast axis that is connected to the generator, which 
produces the electricity (accessed March 22, 
2021, https://www.acciona.com/renewable-energy/
wind-energy/wind-trurbines/).

Besides being unreliable and because of its 
irregular and much lower power output, man and 
animal power has not developed in the same pace 
as hydropower and wind power. Nonetheless, there 
are still some attempts in the use of these natural 
sources of power for driving machineries for different 
purposes (Fuller and Aye, 2012; Phaniraja and 
Panchasara, 2009).

Fig. 10 shows an image from a patent of invention 
aiming to provide an animal powered mechanical 
device for water desalination. The machine is 
described as follows (US Patent No. US7387728B2, 
by Pathak et al., date of publication: June 17, 2008): 
a pair of bulls, capable of exerting more than 100 kg 
of draft and walking at a rate of 50 meters/minute is 
coupled to a mechanical link with the help of a rope. 
The pair of bulls generates a pressure of 300 psi and 
a discharge of 20 liters/minute, when it completes 
one rotation of 8 meters diameter circular path. 

Fig. 11 shows an image from a patent of invention 
of a system and method for producing electricity 
using the biological energy of the muscles of animals 
like horses. The machine is described as follows (US 
Patent No. US20050161289A1, by Gomez-Nacer, 
date of publication: July 28, 2005): “… A system 
and method for generating electricity by means of 
increasing the velocity of an animal on a mechanical 
device directly or indirectly attached to the hoof or 
other part of the limbs of the animal to use the force 
of its muscle contraction and the force produced 

Fig. 10. Image from a patent of invention of an animal 
powered mechanical device for water desalination. 

Element # 9 is an osmosis membrane module 
(source: US Patent No. US7387728B2, by Pathak 

et al., date of publication: June 17, 2008)

Sylvio R. Bistafa — Pages 03–15
EULER’S POWER CALCULATIONS OF “NATURAL FORCES” TO RAISE WATERS WITH PISTON PUMPS



14

Architecture and Engineering	                             Volume 7 Issue 1 (2022) 

by its gravity to make spin multiplying wheels in 
communication to an electricity generator…”

Fig.  12 shows an image of a gear reduction 
system operated by human muscle power or animal 
power to drive a car alternator as a generator to 
charge a typical 12V 40Ah lead-acid automotive 
battery (not shown in the figure). In the experiments, 
human and animal power were used to charge the 
batteries. It took three hours to fully charge a 50% 
discharged battery and 1.5 hours to fully charge a 
75% discharged battery.

Conclusions
Mechanical power as is known today, as a 

measure of the capacity to perform work, seems 
to have emerged in the first half of the 18th century 
in the works of de Belidor, and was extensively 
used by Euler in his 1754 publication, in which he 

Fig. 11. Image from a patent of invention of a system 
and method for producing electricity using the 

biological energy of the muscles of animals like 
horses (source: US Patent No. US20050161289A1, by 

Gomez-Nacer, date of publication: July 28, 2005)

Fig. 12. Human muscle power operating a 
gear reduction system for charging automotive 

batteries (source: Yadav and Rao, 2015)

applied a pioneering approach in providing rational 
calculations for the power needed to drive different 
machinery to raise waters with piston pumps, by 
means of natural sources of power (human power, 
animal power, water flow power, and wind power). 
With the advent of the steam engine in the mid-
18th century, the horsepower as a measure of 
mechanical power was proposed, which later found 
its equivalent in the internationally standardized 
watt unit. It was shown that the use of hydropower 
and wind power have evolved considerably, 
particularly for the generation of electricity, and, 
despite of its much lower attractiveness, there 
have been some attempts in the use of human 
and animal power in particular applications 
that do not require large and constant amounts  
of power inputs.
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