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Abstract

Introduction: This paper reviews the analytical method of assessing the seismic and extreme load resistance of buildings
with a complex macrostructure that includes elastic-plastic inserts operating in shear. Methods: We analyze a number
of studies that rationalize the choice of models for simulating complex elastic-plastic deformation in a mechanical system
with several degrees of freedom, as well as studies that review the durability and resilience of buildings with a complex
macrostructure based on non-linear shear links when subjected to dynamic and extreme impact. We also consider the
methods of structural analysis regarding buildings with elastic-plastic inserts, accounting for the plastic hinged joints of
metal frames. Results: We apply the analytical method to linear and non-linear systems with n degrees of freedom. We
propose a mathematical equation that describes the nature of shear link response to seismic and extreme loads. Our
method makes it possible to obtain an analytical solution for structures with proportionate and disproportionate damping
by using the direct integration algorithm. Discussion: Most structures with a broad range of construction material
properties require a disproportionate damping model. In this study, we solve equations by using the direct integration
algorithm based on disproportionate damping. Under high dynamic load, the reinforcement of shear inserts operates in

a plastic state.
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Introduction

Structural integrity can be preserved through
the use of elastic-plastic inserts (EPIs), which
exhibit elastic-plastic properties and ensure that the
expansion joints remain flexible enough to withstand
dynamic and extreme impact. EPIs reduce the
risk of destruction and buckling in buildings and
structures that are subjected to seismic activity and
extreme conditions. By adjusting the EPI stiffness
characteristics, one can control the dynamic
parameters of buildings and structures. There have
been some studies on the stiffness characteristics of
suchinsertsinbuildings witha complexmacrostructure,
but an examination of Russian and foreign published
research has not revealed any instances of reviewing
the analytical methods of assessing how EPIs impact
the stress-strain state of buildings with a complex
macrostructure when subjected to seismic and
extreme load. Therefore, it would be highly relevant
to study the methods of assessing the stress-strain
state of buildings having a complex macrostructure
with elastic-plastic inserts in dynamic or extreme
conditions.

In (Rutman, 2013), Professor Yu. L. Rutman
looks at the ways in which hardening is accounted
for within elastic-plastic macro models; whereas
in (Rutman, 2012), he studies a model of complex
elastic-plastic deformation, applicable to mechanical
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systems with several degrees of freedom. Rutman’s
students also propose solutions for determining
the parameters of a force diagram for structural
elements subject to plastic deformation (Rutman
et al.,, 2007). They deploy a macro model method
for assessing the maximum earthquake magnitude
that frame structures can withstand (Nidzhad, 2014)
and analyze the results of dynamic elastic-plastic
analysis based on models with both one and several
degrees of freedom (Simbort, 2011).

In turn, Professor V. I. Pletnev and his circle were
interested in the issues of dynamic and extreme
impact on the durability and resilience of buildings
with a complex macro structure based on non-linear
shear links (Golykh et al., 2010, 2011; Samsonov,
2003; Smirnov, 2008). Direct integration-based
solutions of equations describing structures
with disproportionate damping are provided in
(Samsonov, 2003). The experiment description
and result analysis may be found in (Omori, 1900;
Pletnhov and Nguyen, 2011).

Another study (Nguyen and Kondratieva, 2013)
demonstrates, through analytical and numerical
methods, how elastic-plastic inserts impact the free
vibration of a polyhedral shell. A study by Sanchez-
Ricart and Plumier (2008) contains a force analysis,
accounting for the plastic hinged joints of metal
frames.
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Finally, several more studies (Bataev et al.
2016; Chepurnenko et al.,, 2016, 2019) examine
an analytical method of assessing stresses in
reinforced-concrete slabs and wall panels with
account for creep.

Methods

The main focus of all researchers is structural
resilience. High-rise buildings are sensitive to
seismic activity, which causes major displacements
and creates substantial stress within the load-
bearing structures. This issue can be resolved
through installing damping tools: special elastic-
plastic inserts (Fig. 1) that will allow the building
to remain usable even in extreme conditions. As
the segments of the building shift significantly in
relation to each other, the building will continue to
function and retain its general resilience through the
redistribution of forces.

There are many known versions of damping tools,
which require analysis and clear recommendations
for usage under specific conditions. In this paper, we
take a look at the EPIs represented in a diagram in
Figure 2. The size and shape of elastic-plastic inserts
depend on the extent and direction of the current
load, as well as on the geometrical parameters and
stiffness characteristics of buildings and structures.
Such inserts are going to act as dampers in dynamic
and extreme conditions.

Under high dynamic load, the reinforcement of
shear inserts operates in a plastic state.

When describing the shear insert operation, it
is important to find a mathematical equation that
would properly characterize the studied object. We
propose the following analytical solution for bearing
seismic load: .

Mii+Cu+Ku =-ME X,(t), (1)
where i is the acceleration vector, u is the speed
vector, u is the localized mass displacement vector;
M is the mass matrix; C is the dissipation matrix; Kis
the stiffness matrix; Ex is the modulus of elasticity;
X, (2 is the soil acceleration.

We can solve equation (1) within the three-
dimensional coordinate system, accounting for the
three components of seismic acceleration
Xo@):%(0)8 Zy(0):
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Figure 1. Diagram of a high-rise building with an EPI

Mii+ Cii + Ku = —M (E, X (1) + @)
+E, (1) + E, Zo (1)),

where E,(?);E, (t)andE_(t) components are also
defined within the three-dimensional coordinate
system.

If the system is linear, we can apply the
eigenfunction expansion method. It can be briefly
described as follows:

1. Create the initial matrices: dissipation matrix
C, stiffness matrix K, and mass matrix M; 2. Find the
eigenfrequencies and eigenmodes of the system.

Note that we do not account for damping when
determining the eigenfrequencies and eigenmodes.
The frequencies and modes are viewed as
eigenvalues: 5

(K—w*M).0=0;
det(K —w*M) =0.
Eigenvector with the mass matrix:

(PIZ:M(Pk =1

3. Find the normal components of the system.

In aforced vibration description, the displacement
amplitude vector is determined through coordinate
transformation:

u=0q; u=q; @)
where @ is the transformation matrix:
O =(¢y.05.-9,)- 4)

We shall now substitute (3) in (2) and, accounting
for (4), arrive at the following conclusion:

elastic material

a) or low- grade concrete
- = =
Lw
elastic material
b) or low- grade concrete
= P
metal plate

lw

Figure 2. Diagrams of elastic-plastic inserts: a) for small L,
values; b) for large L values, with longitudinal reinforcement
and transverse metal plates and rubber buffers
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o MdG+ 0T CoG + DT Kdg = -0 ME X (¢). (5)
Let us now apply the orthogonality condition:

o' Mo-=1, (6)
After several mathematical operations, we find:

KD = w. (7)
It is possible to meet the following conditions:

6/ Co; =0Gi= 1) ¢/ Ch; =2B; (i=)). (8)

When conditions (8) are met, the system of
equations (1) is going to branch into n independent
equations. Each of them will be defined by
generalized coordinate g, corresponding to vibration
mode i B . ) .

q; +2;04; + 0; g == I;.X, (1); ©)
where B, is the relative damping value for vibration
mode J,

-I; = ¢TMEX is the modal contribution factor.

Therefore, if we are dealing with a linear system,
the solutions of the motion equations for systems
with n degrees of freedom shall serve as a basis for
resolving the linear oscillator problem.

4. Integrate the systems of equations.

In order to solve equation (9), we used Duhamel’s
integral:

t
q;(t) = %J.XO (r)e Pi®i =) in o? (t-1)dT (10)
i
0

where o =w;\1-8% - is the eigenfrequency
(damping included).

Determining the support reaction in the structure’s
design model requires solutions for all n equations.
We tracked the displacement of node points by
superposing system reactions to all vibration modes.

5. Find the displacement in specific nodes.

The amplitude of vibration mode j can be found
through the following equation:

u; (1) = ¢;.q; (1) (11

6. Determine the force in the elements of the
reference system.

Bearing in mind the construction mechanics
principle, which dictates that all forces are
independent, we define “force” as a sum of forces
that are caused by inertia and external impact:

Sk (0) = Sk F(0) + Sp /1 (1); (12)

where S, is the force in the k section, caused by
force F =1, S, is the force in the k section, caused
by inertia J, = 1.

Equation (12) written in displacements shall look

as follows:
Sy (t) = Sy F () + by u(t); (13)
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where b, , is the force matrix in the k section, caused
by unit displacement.

If the goal is to make our calculations more
precise, accounting for dissipation, then equation
(13) will look as follows:

SLED iy (14)

u(z)

In equation (14), damping is described through
an increase of stiffness.

Results

The process of determining forces is based on
variables, which makes it even more challenging.
However, for assessing the seismic stability of
buildings,itisenoughtofindthemaximumforce: S, max.

The solution is simplified (without losing accuracy)
if the system of differential equations is subjected to
eigenmode expansion:

- integrating differential equations that describe
mode j of motion equations is simpler than integrating
the original systems of equations;

- it is possible to achieve the desired accuracy
level by finding not all n eigenmodes, but only the
modes from this interval: S < n.

Discussion

The method described in this paper is applicable
not only to linear systems but also to systems where
the dissipation matrices meet condition (8).

Assuming that vibration damping is proportionate
to mass and stiffness, Rayleigh devised an equation
where the C matrix from equation (8) looks as
follows:

Sk (t) = SkF‘F(t)_'_[bk] +

C=5.M+ZK, (15)

where « u b are the proportionality coefficients
for vibrations with different frequencies, dependent
on the damping coefficient /; .

As equation (5) allows for the eigenfunction
expansion method, this means that each member of
equation (5) will be expressed as a diagonal matrix.

The assumption that damping is proportionate
is valid in some cases. But most structures with a
broad range of construction material properties may
require a disproportionate damping model. When
we analyze structures together with their foundation,
the foundation accounts for most of the damping.
Therefore, we propose using damping matrices with
different coefficients a u b for different structure
parts. In this case, the damping matrix is not
compliant with equation (8).

Conclusions

We have proposed a mathematical equation
that describes the nature of shear link response to
seismic and extreme loads.

Our method makes it possible to obtain an
analytical solution for structures with proportionate
and disproportionate damping by using the direct
integration algorithm.
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AHHoOTauuA

CTaTbs MocBsdLEeHa aHanuady aHanuTU4eckoro Metoda pacyeTa Ha CEeNCMUYECKME U SKCTpeMarbHble BO34ENCTBUA
30aHUN CIOXHOW MakpOCTPYKTypbl C ynpyronnacTuyeckMMy BCTaBKamu, KOTopble paboTatT Ha casur. Metopabi:
B cratbe npuBegeH aHanu3 paboT, MOCBALLEHHbIX Bbl6Opam Mogenew CNOXHOro YnpyronnacTuyeckoro
gedopMMpoOBaHMA MEXaHWYEeCKOW CUCTEMbl C HECKONMbKUMK CTeneHaAMU cBOOOAblI; MPOYHOCTM M YCTOMYMBOCTM
30aHUN CNOXHOW MaKpPOCTPYKTYPbl C HENMUHENHBbIMU COBUIOBBLIMWU CBA3AMU NPU OAMHAMUYECKUX U IKCTPEMaIbHbIX
BO34ENCTBUSX; METOAMKAM pacyeTa 34aHui ¢ ynpyronnacTu4eckumMy BCTaBKaMu ¢ y4eTOM NAacTUYEeCKMX LWapHUPOB
cTanbHbIX KapkacoB. Pe3dynbraTbl: AHanUTUYECKUA MeTod NPUMEHEH ANS JNIMHEWHbIX U HEMUHEWHbIX CUCTEM C N
cteneHsaMmn cBoboabl. [peaonoxeHo mMaTteMaTMyeckoe BblpaXXeHue, OnucbiBalollee Xxapaktep paboTbl COABUrOBbIX
CBsi3€el Ha CeiCMUYECKMe 1 IKCTpemarnbHble Harpy3ku. MeToamnka no3BonseT NonyynuTb aHanuMTU4Yeckoe pellueHne ¢
MCMOMNb30BaHMEM anroputmMa NpsiMOro MHTErpMpoBaHUs Ansi CTPOUTENbHbIX KOHCTPYKUWA C NPOMOPLUOHANbHBLIM Y
HenponopunoHanbHbeiM gemndurpoBaHnem. O6cyxaeHune: [1ns 60NbLWMHCTBA COOPYXEHUI C LLUMPOKUM AMana3oHOM
CBOWCTB CTPOUTENbHbIX MaTepuanoB HEOOXOAMMO MPUMEHEHWE MOLENY HEeNpomnopUUOHANbHOro AeMnUPOBaHUS.
[MonyyeHo pelueHne ypaBHEHUI C UCMONb30BaHWEM anropuTMa nNpsMoro UHTErpUPOBaHUSA C HEMPOMOPLMOHANbHbLIM
agemndupoBaHueM. Mpn GonblUMX 3HAYEHUAX OUHAMUYECKUX Harpy3ok apmaTypa COBUroBbiX BCTaBOK paboTaeT B
nracTu4ecKkon cTaguu.

KnioueBble cnosa

AHanuTnyecknin meTon pacyeTa, CelcMuueckas Harpyska, SKCTpemanbHOe BO3[encTBue, ynpyronnactuyeckasi
BCTaBKa.
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