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Abstract

Introduction: The significance of energy saving in residential construction is associated with the reliable
determination of design thermal conductivity characteristics of construction materials. The authors describe a concept
of the structural and mathematical modeling of concrete thermal conductivity. The concept is based on methods of the
structural approach and generalized conductivity theory. Purpose of the study: The study is aimed at developing an
adequate structural and mathematical model to determine the thermal conductivity of concrete. Methods: The authors
used the statistical method as a representation of the statistical homogeneity of a multi-component composite closely
related to thermal homogeneity, which is understood as a medium with effective thermal resistance constant in space.
Results: The authors developed a structural and mathematical model to determine the thermal conductivity of concrete.
The model accounts for concrete structural factors existing at the time when the structure formation of concrete is, for
the most part, complete. The model also accounts for the thermal and physical properties of concrete components as
well as macro- and mesostructural features of concrete. The paper presents calculated data for potential macro- and
mesostructural factors, which makes it possible to determine the thermal conductivity of concrete characterized by
low thermal conductivity and use the results derived for the approximation of prediction trends related to the thermal

properties of such concretes in the operation and adaptation period during the use of building envelopes.
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Introduction

The issue of the reliable determination of concrete
thermal conductivity is one of the most important in
modern construction material engineering. The potential of
improving heat-protection efficiency and resource-saving
in the manufacturing and operation of building envelopes
depends on its successful solution.

The following model of concrete thermal conductivity
was suggested in the earlier paper of the author (Gryzlov,
2008):

A0) = 20— Moty e 1) M

where A(t) is concrete thermal conductivity at fixed time
t; A, is concrete thermal conductivity when the structure
formation process is, for the most part, complete (28 days
of hardening); A\ (1) is an increment that occurs as a result
of operations during time t; t, is time of intense structure
formation; T is time of thermal conductivity relaxation.

The minus sign before A (f) indicates that thermal
conductivity adaptation is related to balancing constructive
and destructive processes occurring in concrete that, in
general, lead to a decrease in internal stress and transition
to a stable equilibrium state of exponential nature. Equation
(1) can be considered a general equation for the formation
and prediction of concrete thermal and physical properties
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during the operation of building envelopes. The solution
to the prediction problem reduces to the optimization of ),
and t. The ), parameter is a structural and technological
aspect of the property, which can be found at the stage
of structure selection and formation; the 1 value depends
not only on the internal parameters of A but also on the
concrete adaptation mode.

According to many researchers (Buzhevich, 1970;
Ivanov, 1974; Karamyan, 1976; etc.), the thermal
conductivity of concrete is closely related to its density
since pores in concrete are filled with air to a large extent.
Such an approach is determinative in selecting the design
values of thermal conductivity coefficients, and it is
captured in regulatory documents (Ministry of Regional
Development of Russia, 2012). Table 1 provides empirical
equations to determine the thermal conductivity coefficient
for inorganic particulate materials, recommended for a
wide range of materials, including concrete with a density
of 400 < y < 1800 kg/m?®. These equations support the
concept of the predominant influence of the material
density on its thermal conductivity. However, they also
indicate a significant variation of data on the thermal
conductivity coefficient at the same density (A1 > 50%),
which is even more significant in the case of extreme
values (Figure 1).
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Table 1. Empirical equations to determine the thermal conductivity of concrete
No. Author Equation

1 Buzhevich G. A. 1=0.38¢10°-0.12

2 Vlasov O. E. 1 =0.2y+0.05y?

3 Ivanov I. A. 1=0.0005y—0.25

4 Kaufman B. N. 1=0.11y"1.68" + 0.022

5 Karamyan K. O. 1=0.046 + 0.16y?

6 Nekrasov V. P. A =1.16V(0.0196 + 0.22y%) — 0.16

7 Spektor B. V. 1=0.029+2.19 - 10*y

1 is the thermal conductivity coefficient; A is density

0.8

ey IO WSRO N ..

0.6
0.5 R ——— ., e

04

0.3

Thermal conductivity, W/(m-°C)

01

0 500

D i._._.,. T ..._i-_ ey ,

1000
Concrete density, kg/m?

1500 2000

Figure 1 Graphical representation of the equations given in Table 1.

It should be noted that this variation is a consequence
of experimental studies conducted by the authors with
regard to a certain group of concretes, which confirms
that, in the generalized analysis of various types of
concrete composites, the structural concept of thermal
conductivity exists. The equations given are expressly
linear, which indicates a certain bias in the authors’
reasoning.

When developing the concept of the influence of
concrete porosity on its thermal conductivity, a number of
researchers suggested determining thermal conductivity
as models of particulates with account for their porosity
(Chudnovsky, 1962; Dulnev and Zarechnyak, 1974;

Krischer, 1934). An analysis of these models has shown
that the models by Krischer and Bernshtein are the most
appropriate for concrete. To a certain extent, these models
interpret the dependence of thermal conductivity on
porosity and can be transformed into linear functions of
the following type:

A, =A,—aPr,, 2)

In the case of fixed values of matrix and inclusion
thermal conductivity (Table 2), the equations become
identical and have the same value of the dimensionless
factor a.
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Table 2. Models of particulates’ thermal conductivity with account for porosity

* Equation transformed
Author Model Equation into the following form: A = {(P)
at X, A, — const
i (FZFFZZ 7T 7T 100
Krischer O. wrrrzrZZzz77a A=A, %
CZZZ 7777 777 A k—z (100 - Pr,,, )+ Pr,,, A,=1,-0.23Pr
1
- . f f 1
5 % Y 100—Pr,,, Pr,., A.=1,-0.23Pr
A8 M 2
100 100
Bernshtein 4Pr, A
R.S. b=ty -ty (1= 2Pn,) =1 -023Pr
1+72 2 c m gen
1

Note. 2 , 1, are matrix and inclusion thermal conductivity values; Pr_ is general porosity, fractions of volume;
*example: 1, =0.54 W/ (m - °C; 1, = 0.3 W/ (m - °C).

The most important thing arising out of the analysis of
these models is the confirmation of the statement that, for
concretes with continuous matrix structure and minimum
porosity, the matrix, i.e. the cement paste (sand-cement
mortar), is the main heat conductor.

With regard to the recipe and technological factors
as well as macrostructure, mathematical models

describing the dependence of the thermal conductivity
coefficient on the inclusion volume are quite interesting
(Table 3). While having different mathematical structures,
these models, at fixed values, also transform into the
linear form, which confirms their qualitative and not
quantitative nature.

Table 3. Mathematical models of thermal conductivity with account for the inclusion volume

*Equation
Author Equations transformed into the following form:
A =f(P)at\ /A =const
Odelevsky V. I. A =1 -022P
A=A |1 P c
¢ “m B 1-P
B—-1 3
Dovzhik V. G.
7\’ — X 2>\‘m+}\‘inc_2P(}\‘m_;\‘inc) 7Lc=lm—0.22P
¢ "L2h, A PO, -
Missenard, A. lc=lm—0.22P
1—
A=A, | 1+ P—; B
1= P -(1-B)

Pis the relative inclusion volume; =21 /1, ; example:1 =0.54 W/ (m-°C);linc=0.3 W/ (m-°C).
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The equations given in Tables 2 and 3, with relevant
assumptions, can be transformed into the following form:
Ac=f(A ,v), and they have a more information-bearing
structure than the equation (Table 1).

Ae Zf(Pl”gen) =ln—a (] -7 /Vcta’) 3)

where v, is concrete true density, a is a dimensionless
factor.

e =f(P)=im—aly—123C)/ya @)

where y  is aggregate density in a lump; C is cement
consumption per 1 m* of concrete.

However, each of the equations, taken separately,
does not provide sufficient insight into the influence of
the differential distribution of pores, defectiveness of the
structure, granulometric, phase and mineral composition
of the components on the thermal conductivity of concrete.
In this context, the purpose of the study was to:

- develop a structural and mathematical model to
determine the thermal conductivity of concrete that
would reflect the influence of its structural factors
existing at the time when the structure formation of
concrete is, for the most part, complete.

Methods

Actual multi-component composites consist of particles
of no particular form. Therefore, in order to determine
the effective thermal conductivity of such media, it is
recommended to use the statistical method. This method
can be applied to statistically homogeneous media.
Visual interpretation of the statistical homogeneity of a
medium means that grains of heterogeneous parts shall
be sufficiently small as compared to the characteristic
dimensions of the body and shall be distributed in a
random manner but uniformly in space. Statistical
homogeneity is closely related to thermal homogeneity,
which is understood as a medium with effective thermal
resistance constant in space. When applying the basic
concepts of the generalized thermal conductivity theory
(Odelevsky, 1951) to a multi-component matrix system,
the equation for the calculation of the effective thermal
conductivity, provided that the conditions of structural and
statistical homogeneity are met, can be transformed into
the following form:

ieff =221 v,~2 + 24 /1]' ViVj / (Li + /1]) (5)

where A . is the thermal conductivity coefficient of the
system, W/(m-degree); 1 , A,v,v are thermal conductivity
coefficients and relative volumes of components,
respectively.

This equation is the first approximation to the actual
situation. If we present a two-component model of
concrete in the form of a layer structure with layers located
perpendicular (Figure 2 a) and in parallel (Figure 2 b) to the
heat flow (Krischer’s model), it is obvious that the first case

will be characterized by the maximum thermal resistance,
while the second one will be characterized by the minimum
one.
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Figure 2. Regarding the calculation of the maximum
and minimum thermal resistance of the model:
a — the layers are perpendicular to the heat flow;
b — the layers are in parallel to the heat flow

The maximum (R ) and minimum (R ) thermal
resistance of this model are described below. Let us
assume that 2 1, are thermal conductivity coefficients
with regard to the matrix (binding agent) and inclusion
(aggregate); P is the relative inclusion volume, P =1 -P
is the matrix volume; p=21 /A is the ratio of the thermal
conductivity coefficients.

Scheme a. Heat flow Q does not depend on the
point on the model surface. In this case, the heat flow is
expressed clearly through the difference of temperatures
on the opposite surfaces.

AT
0=—
R
L — h; h:
where R — inc  "inc
}‘m xinc

For a unit layer:

1 hinc 1
—+

6
L Jhy L R ©

m

Since (h, /L) =v, , equation (6) can be transformed into
the following form:

Ruax =[1 +P(B—1)]/Am (7)

which will correspond to the maximum thermal
resistance of the model.

Scheme b. Heat flow Q depends on the point on the
model surface. In points related to the inclusion:

Qinc = AT/(L/}\'mc) (8)

In points related to the matrix:

9)
Qm = AT/(L/}\.m)

To calculate the average value of Q on the model
surface, let us denote the inclusion surface area as S_,
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and the matrix surface area — as S _. The total area is
equal to: S=S, +S, .

The average density of the heat flow on the surface S

equals to: S
_Q:Qincﬁ'FQmim'
S S
Let us apply the values of Q. _and Q, to equation (10).

Then, we will obtain the following:

(10)

Sincxinc N Sm}‘m

SL SL an

Hence, the thermal resistance of the model is as
follows:

R =

0 = AT

For unit thickness, we will obtain:
1
R =

S S
m
}‘inc T 7‘m

S S

inc

(12)

Taking into account that S, / S corresponds to P, we will
transform equation (12) into the following form:

Ruin=[1+P(B~1)/(P+(1-P)BJ]/m 13)

which will correspond to the minimum thermal
resistance of the model.

By comparing equations (7) and (13), a general
structural model of the thermal conductivity of concrete
can be found:

= + —
Aef =2m/ [1 + P (B—1)x] (14)

In this equation, x is a dimensionless control factor,
which is a product of x' (macrostructural level factor)
and x" (mesostructural level factor). To determine x', the
expression 1/ [P+ (1 - P)B] from equation (13) is used. It
should guarantee the minimum error when determining the
thermal conductivity of concrete. A nomographic chart of
the calculated values of x'is given in Figure 3.

T Y/
04 - \(
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Figure 3. Nomographic chart of the calculated values of x’

In the model under consideration, g is a boundary
condition, a peculiar kind of the criterion of sensitivity that
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divides concretes into ordinary ones (B < 1) and those with
low thermal conductivity (8 >1), which is adopted as one of
the control factors at the microstructural level.

Results and discussion

The model presented (14) can be considered universal
since, through algebraic transformations, a number
of known mathematical models of thermal conductivity
based on the principles of the generalized conductivity
theory (Table 4) are transformed into the form (14), which
shows a good approximation of this model with regard to
the structural interpretation of the thermal conductivity of
concrete. The analysis of the models transformed points
at their intermediate value between the values of R _and
R in equations (7) and (13), i.e. each of these models
reflects a certain principle of inclusion location between the
maximum and minimum values of the thermal resistance
indicators and, therefore, the thermal conductivity of
concrete. Being structural and mechanical, they do not
reflect the influence of physical and chemical processes
occurring in the contact area, i.e. they do not take into
account the level of the mesostructure.

Table 4. Transformation of known mathematical models
of thermal conductivity into the form (14)

Author, Dependence type,
source transforma;ion into theIorm (14)
Odelevsky V. I. P
Ao =hm|1- T
B-1 3
1 1
—=—|1+@-DP (14.1)
he }‘m|: 2(B+1—2P(ﬁ—1)}
Dovzhik V. G. o Dy + Ao ~ 2P0y ~ i) |
CM 2y e + 2P0y i) |

Lo e (14.1)
7\‘: )‘m 2B+1-2PB-1)

Missenard, A.

1-p
A=k, |1+ P—5—F———|;
i1

[ 1
— = |+ B-DP———— (14.2)
T [ 5 ]
1+@-D| P> -P
Khlevchuk T P
|1+ .
V.R. L i eaep
Kim L. N.
1 1 1
— =1+ (1P (14.2)
}‘m }\'rﬂ

1
1+(51)[1>3 P}
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The assessment of this level was conducted
experimentally and made it possible to derive a condition
for the assignment of x". First of all, it was established that
layered models consisting of the cement paste and the
aggregate, imitating a contact area, have an integrative
indicator of thermal conductivity that is less than the
additive one by 10—13% (Kirpichev and Konakov, 1949);
at (> 1), the following condition is in place:2_ <A, <1 @ _,
is the thermal conductivity coefficient of the contact area).

To assess the impact of the contact area, we will
represent the inclusion as a set n of the fractions of the
aggregate. Each fraction consists of cubes with the edge
d.(d, <d,<..<d). The cubes are oriented in such a way that
the heat flow is perpendicular to a surface. The relative
share of the i* fraction of the aggregate is a, = = 1. Then,
with a known relative aggregate volume P, the values of
P_, (contact area volume) and P, (matrix volume) can be
determined by the following equations:

Pca =2d P (32 a; d? +6dX aid; + 4d2) /% aid?;

Pn=1-Pca—P (15)

where d is the thickness of the contact layer that
depends not on the size of the aggregate particles but on
the aggregate technology and material.

Let us consider a parallelepiped with thickness L
consisting of the layers of the matrix, contact layer and
the aggregate, joined up in series, in a concrete wall. The
cumulative thickness values will be as follows:

for the aggregate layers — P L; for the contact area
layers — 2dPL / X a_d; for the matrix layers — (L - LP -
2dPL)/Xa d.

With the thickness values known, we can find the
thermal resistance of the parallelepiped R, by the following
equation:

R,=L [P/kmc +2dP /[ hea X a;d; +

+ (1 —=P-2dP /X aid))) \n] /' S (16)

To transform equation (16) into the form corresponding
to the general structure of x" (14), we will introduce following
parameters: D =d/d, i.e. the ratio between the thickness of
the contact layer and the size of the aggregate grain, and
p=2,/1_,,ie.the ratio between the thermal conductivity
coefficient of the matrix and the thermal conductivity
coefficient of the contact area.

After the transformation, we will obtain:

Aep=tm/[1+PB-1Dx"(1+2D(p-1)/B—-1)] (17)

Letus adopt x"=1+2D(p.—1)/(B-1),

By substituting values of x"and x" in equation (13), we
will obtain:

Aefp =2 [P+ B (1=P)]/[B+2D P (p—1)] (18)

where [P+ B (1-P)]/[B+2D P (p - 1)] can be generally
adopted as the structural and technological factor (x) at the
stage of the formation of integrative quality, in this case —
the thermal conductivity of concrete.

The results of calculating x for theoretical and practically
possible values of B, 8, D, p in concretes with low thermal
conductivity are given in Table 5.

Table 5. Results of calculating the macro- and mesostructural factor x in concretes with low thermal conductivity at
fixed values of v._,B,D,p

PB D 4 X PB D 4 X PB D 4 X
2.0 0.517 2.0 0.543 2.0 0.614
0.2 1.5 0.555 0.2 1.5 0.581 0.2 1.5 0.654
1.2 0.581 1.2 0.606 1.2 0.680
08 2.0 0.535 075 2.0 0.584 07 2.0 0.633
0.15 1.5 0.566 0.15 1.5 0.615 0.15 1.5 0.665
20 1.2 0.585 20 1.2 0.635 2.0 1.2 0.685
2.0 0.548 2.0 0.596 2.0 0.645
0.12 1.5 0.572 0.12 1.5 0.622 0.12 1.5 0.671
1.2 0.589 1.2 0.638 1.2 0.688
2.0 0.604 2.0 0.622 2.0 0.646
0.2 1.5 0.662 0.2 1.5 0.678 0.2 1.5 0.701
1.2 0.703 1.2 0.718 1.2 0.739
08 2.0 0.632 075 2.0 0.649 07 2.0 0.672
0.15 1.5 0.679 0.15 1.5 0.695 0.15 1.5 0.716
5 1.2 0.710 15 1.2 0.725 15 1.2 0.745
2.0 0.650 2.0 0.666 2.0 0.693
0.12 1.5 0.689 0.12 1.5 0.704 0.12 1.5 0.726
1.2 0.715 1.2 0.729 1.2 0.750
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Pg D P X Pg D P X Pg D P X
2.0 0.684 2.0 0.700 2.0 0.716
0.2 1.5 0.764 0.2 1.5 0.777 0.2 1.5 0.834
1.2 0.822 1.2 0.833 1.2 0.843
08 2.0 0.722 0.75 2.0 0.726 0.7 2.0 0.752
0.15 1.5 0.788 0.15 1.5 0.800 0.15 1.5 0.811
12 1.2 0.833 12 1.2 0.843 12 1.2 0.853
2.0 0.747 2.0 0.760 2.0 0.774
0.12 1.5 0.802 0.12 1.5 0.813 0.12 1.5 0.825
1.2 0.840 1.2 0.849 1.2 0.859

Thus, knowing or assuming the structural and
technological characteristics of concretes with low thermal
conductivity, using equations (1) and (18), it is possible
to approximate the predictive trends of heat-protective
properties of these concretes in the operation and
adaptation period during the use of building envelopes.

Conclusions

1. The authors developed an adequate structural and
mathematical model to determine the thermal conductivity
coefficient of concrete. The model accounts for concrete
structural factors existing at the time when the structure
formation of concrete is, for the most part, complete.

2. This model, albeit a bit complicated, makes it
possible to assign the value of the thermal conductivity

26

coefficient of concrete on a case-by-case basis, taking into
account its structural and technological characteristics.

3. It has been confirmed that in concretes with
continuous structure, the matrix is the main heat conductor
and thermal conductivity factor; the effectiveness of
the matrix can be improved or reduced through its
modifications or application of the binder with a lower
thermal conductivity coefficient.

4. For concretes with low thermal conductivity, the
aggregate with the thermal conductivity that is significantly
lower than the thermal conductivity of the matrix shall be
selected and used, and standard operating procedures,
ensuring an increase in the degree of airborne dispersion
of the mesostructure and, therefore, an increase in its
thickness, shall be applied.
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CTPYKTYPHO - MATEMATUYECKAA MOAEJIb TEMNOMNPOBOOHOCTH
BETOHA

Bnagumup Cepreesud peisnos!, Anna lepmaHoBHa KanTiowmnHa?

24epenoBeLKMiA rocy4apCTBEHHbIN YHUBEPCUTET
MpocnekT JlyHavapckoro, 5, Yepenosel, Bonoroackas obnacts, Poccus

'E-mail: gryvs@mail.ru

AHHOTauuA

AKTyanbHOCTb 3HeprocbepexeHns B CTPOMTENLCTBE XUMNbIX 34aHNN HENOCPEACTBEHHO CBA3aHa C AOCTOBEPHbIM
onpefeneHnemM pacyeTHbIX TEMNMNOTEXHUYECKUX XapaKTepUCTUK CTPOUTENbHbIX MaTtepuanoB. ManoxeHa
KOHLEeNUUs CTPYKTYPHO — MaTeMaTMYE€CKOro MOAENMPOBaHMUS TENNONPOBOAHOCTN BETOHA, B OCHOBY KOTOPOM,
NofIOXeHbl METOA0MOrMM CTPYKTYPHOro noaxona n obobueHHon Teopumn nposogmumocTu. Llenb nccnepgoBaHus.
PaspaboTka agekBaTHOM CTPYKTYPHO — MaTeMaTM4YeCKOW Moaenu no pacyeTty TennonpoBogHocTy 6etoHa. MeTton.
Mcnonb3oBaH CTaTUCTUYECKUA METOA, Kak MHTepnpeTauusa cTaTMcTMYeckon OgHOPOOHOCTY MHOFOKOMMOHEHTHOIo
KOMMO3MLUMOHHOro Matepumana, kKoTopasi TECHO CBsid3aHa C TepMMYECKON OQHOPOAHOCTLIO, NOA KOTOPOW NOHMMaeTCs
cpefa C NOCTOSIHHBbIM MO MPOCTPaHCTBY 3P (PEKTUBHBIM TEpMUYECKUM conpoTuBrneHnem. Pe3ynbratbl. PaspaboTaHa
CTPYKTYPHO — MatemMatuyeckas mogerib No pacyeTy TensonpoBOAHOCTU BeTOHa, yynuTbiBaoLwWwas BrIUgHUE ero
CTPYKTYPHbIX PaKTOpPOB, CCHOPMUPOBAHHBIX HA MOMEHT 3aBepLUEHNSs, B OCHOBHOM, NpoLecca CTPYKTypoobpa3oBaHus.
B paspaboTtaHHOM mogenu yunTbiBaloTCs Tennogusnyeckmne CBOMCTBa KOMMNOHEHTOB BeToHa, ero Makpo- u Me3o-
CTPYKTYpHbIe ocobeHHOoCTW. lNMprnBeaeHbl pacyeTHble AaHHbIE NPAKTUYECKN BO3MOXHbIX MaKpPO — Me30 — CTPYKTYPHbIX
(aKTopOB, YTO NO3BOMSET ONPEAEnATh BENUYMHY TeNNONPOBOAHOCTU ManoTennonpoBogHOro 6eToHa u ncnonb3oBaThb
Nnony4yeHHble pesynbraTbl AN annpoKCMMaLumM NPOrHO3HbIX TPEHAOB TENMO3aALMTHBIX CBOMCTB 3TUX GETOHOB B
aKcnnyaTaunoHHO — aganTalMoHHOM nepuoe paboTbl Orpa)KAatoLMx KOHCTPYKLMNA.

Knro4yeBble cnoBa

TennonpoBOAHOCTb, CTPYKTYPHO — TEXHOMOMMYECKUA hakTop, MaTeMaTnyeckast Mogenb, MPOrHO3 Tennoguanyeckmnx
CBOWCTB.
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