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Abstract
Introduction. Cylindrical shells embedded in the soil medium are generally used in pipeline transportation. To prevent 
damage to pipelines by concrete weights when the structure surfaces in a waterlogged environment, it is proposed to 
use concrete pipe products, with the inner part made of steel and the outer part formed by a concrete layer 30–50 mm 
thick. In this case, the designer faces the question of which calculation method to use for determining the natural vibration 
frequencies. Purpose of the study: To compare the values of natural vibration frequencies of a large-diameter steel-
concrete gas pipeline in the ground, obtained using an analytical dependency, with the values determined in the Lira 
software package. Methods: The first method of determining frequency is based on an analytical expression obtained 
using the semi-momentless theory of cylindrical shells. The second method is based on the finite element method with the 
construction of a computational model in the Lira-SAPR software. Modeling of steel and concrete layers of the composite 
shell in the software package was carried out using 4-node plates, which are combined into a common structure with the 
help of perfectly rigid bodies (PRB). In the first case, the calculation for the soil medium surrounding the shell was carried 
out by creating a mass (measuring 5.3×5.3 meters) using volumetric bodies, while in the second case, it was done by 
setting a coefficient of subgrade reaction for the concrete layer. Results: We established that the second method of setting 
soil conditions allows a 5–6 times reduction in data entry time while achieving the same results. The discrepancy in the 
natural vibration frequencies for the research object, determined by the analytical method and the finite element method 
(FEM), does not exceed 10 %, and for the first three frequencies of the spectrum, it is no more than 6 %. Therefore, all 
methods are applicable. However, the use of an analytical expression allows calculations to be performed 10 times faster 
and does not require specialized software, making it more advantageous in the design based on frequency characteristics.

Keywords: natural vibrations; finite element method; semi-momentless theory of cylindrical shells; frequency.

Introduction
Cylindrical shells laid in a soil medium are 

generally used in the oil and gas industry for the 
transportation of hydrocarbons. The main pipeline 
is a multi-kilometer structure that is laid in various 
soil conditions, including areas with anticipated 
waterlogging and in waterlogged soils. Balancing 
of such sections is carried out using encircling 
concrete weights, which can damage the original 
geometry of the pipe section during maintenance 
or operation, thereby negatively affecting the 
reliability of the structure. One of the options to 
prevent such scenarios is the use of concrete 
pipe products, where the inner part is made of 
large-diameter steel pipes (d<1000 mm) with a 
parameter of 0.015 ≤ h/R ≤ 0.05, and the outer 
part is formed by a concrete layer 30–50 mm thick. 
The reliability of such structures must be ensured 
by proper calculations during the design phase, 
one of the tasks of which is to ensure vibration 
resistance. In this case, the designer faces the 
question of which calculation method to use to 
determine the frequencies and modes of natural 
vibrations when constructing the pipeline based on 
frequency characteristics.

In the analyzed open sources published over 
the last 10 years, an approach using analytical 
expressions is proposed, as well as the application 
of the semi-analytical finite element method (FEM) 
in various software packages. For example, in the 
works of Shao et al. (2022), Shui et al. (2023), 
and Tan and Tang (2023), it is proposed to use 
analytical dependencies, which were obtained 
for a calculation scheme in the form of a rod, to 
determine the natural vibration frequencies of 
single-layer pipelines, taking into account the flow 
velocity of the fluid. This approach does not account 
for the deformation of the section and can be used 
for thick-walled cylindrical shells with parameters 
0.07 < h/R < 0.125. Vibrational processes for 
cylindrical shells partially supported on the ground, 
based on the rod theory, were investigated by Xü 
et al. (2018). Leontiev and Travush (2020) studied 
the vibrations of an underwater pipeline for the 
pipe-fluid-soil system; however, the paper does not 
cover the issue of internal working pressure, which 
prevents the deformation of the cylindrical shell 
in the radial direction and is undoubtedly present 
during the transportation of oil or gas products. 
Shakiryanov and Akhmedyanov (2020) as well as 
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Yulmukhametov et al. (2020) studied the influence 
of internal non-stationary pressure on bending 
vibrations for computational models of closed 
cylindrical shells, but did not address the issue of 
the external environment surrounding the shell. 
Farshidianfar and Oliazadeh (2012), Lee and Kwak 
(2015), Oliazadeh et al. (2013) used various shell 
theories to determine the natural frequencies of 
pipeline vibrations: Soedel, Flügge, Morley-Koiter, 
and Donnell. The result of the solution using these 
theories is a determinant, which, when extended, 
calculates the frequency of natural vibrations. The 
work by Piacsek and Harris (2019) is analogous, but 
with the focus on aluminum structures. In (Kumar et 
al., 2015) and (Kumar et al., 2017), radial oscillations 
are studied without considering soil conditions, 
and the solution is obtained using the semi-
momentless theory of cylindrical shells by Vlasov–
Novozhilov. In (Sokolov and Razov, 2020), analytical 
dependencies were obtained for determining the 
natural vibration frequencies of semi-underground 
large-diameter pipelines. In (Bochkarev, 2022), 
a similar approach was implemented for a two-
parameter foundation, but without considering the 
effect of longitudinal compressive force and internal 
pressure. Shahbaztabar et al. (2019) examined the 
natural frequencies of a metal-ceramic cylindrical 
shell embedded in a Pasternak elastic foundation, 
but did not consider internal pressure. The works by 
Alshabatat and Zannon (2021), Baghlani et al. (2020), 
and Ebrahimi (2022) were dedicated to three-layer 
shells. However, the functionality of the solutions 
obtained is extremely limited, as they do not take 
into account the internal pressure on the shell wall, 
the longitudinal compressive force, or the resistance 
of the medium that prevents wall deformation. Jain 
et al. (2016) used a software based on the finite 
element method and developed a methodology 
for modeling and determining the natural vibration 
frequencies for a cylindrical shell in ANSYS with 
various types of constraints, but without considering 
the external environment, and compared the values 
with the previously obtained results. Kumar et al. 
(2015) used ABAQUS to model and determine the 
frequency spectrum, while Dyachenko et al. (2019) 
used the ANSYS software; subsequently, the authors 
compared the obtained results with the results of 
calculations using analytical formulas. Dashevskij 
et al. (2021) obtained the natural frequencies for a 
metro tunnel using MSC Patran/Nastran software, 
but without using analytical dependencies. The 
literature review shows that numerous works are 
dedicated to this topic, and the approaches to solving 
the problem are diverse.

The aim of this work is to analyze the influence of 
soil conditions on the values of the natural vibration 
frequencies for a steel-concrete pipeline, as well as 
to compare the obtained results for the two proposed 

methods for determining frequencies to identify the 
optimal approach to solving the problem.

Subject, objectives, and methods
The object of the study is a section of a cylindrical 

two-layer shell designed for the transportation 
of natural gas, with a radius of the main steel 
layer R  = 0.71  m and a thickness of h2  = 18  mm. 
The thickness of the second concrete layer is 
h1  = 40 mm. The length of the considered section 
of the cylindrical shell is taken as 7, 8, and 9 m. The 
moduli of elasticity for concrete and steel, as well 
as the density of the layers, are respectively equal 
to E1  = 3.24711∙1010 (N/m2), E2  = 2.06∙1011 (N/m2), 
γ1  = 24,516.6 (N/m3), γ2  = 76,982.2 (N/m3). The 
Poisson’s ratio for steel and concrete of class B30 
is assumed to be ν = 0.3. The internal pressure is 
assumed to be p0  = 0  MPa, and the longitudinal 
compressive force is also not considered.

The problem considers four types of soil 
conditions:

•	 In the first case, the structure is placed in 
a peat mass with the following parameters: soil 
density γgr = 11,770 N/m3; soil modulus of elasticity 
Egr = 500,000 N/m2; soil Poisson’s ratio νgr = 0.49.

•	 In the second case, the soil medium is 
represented by uncompacted fill soil with the 
following parameters: soil density γgr = 16,660 N/m3; 
soil modulus of elasticity Egr = 3,000,000 N/m2; soil 
Poisson’s ratio νgr = 0.35.

•	 The third case considers compacted fill soil with 
the following parameters: soil density γgr = 17,660 N/m3; 
soil modulus of elasticity Egr = 5,000,000 N/m2; soil 
Poisson’s ratio νgr = 0.35.

•	 The fourth case is clay: soil density γgr  = 
= 19,620 N/m3; soil elasticity modulus Egr  = 
20,000,000 N/m2; soil Poisson’s ratio νgr = 0.42.

The first method for determining the natural 
frequency is based on the use of an analytical 
expression derived for the calculation scheme 
shown in Fig. 1.

We consider a section of a steel gas pipeline in a 
concrete casing, with the ends of the section assumed 
to be hinged. The pipeline is buried in the ground no 
more than half its diameter from the top generatrix 
to the ground level. In the governing equation for 
this situation, in addition to the internal pressure p0 in 
the cylindrical shell, the elastic resistance of the soil 
medium qgr is taken into account, while the active 
soil pressure on the wall of the cylindrical shell is not 
considered, as it is minimal. The added mass of the 
soil, which may be involved in the vibration, and the 
longitudinal compressive force that appears during 
thermal deformations or uneven settlement of the 
structure, are also not taken into account.

The resistance of the soil medium is assumed to 
be radial and is described by expression (1), which 
corresponds to the distribution pattern along the 
circumference of the shell as shown in Fig. 1:
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in the radial direction are substituted into (4) and 
considering the dependencies between forces and 
deformations, displacements and deformations, 
without taking into account the nonlinear components 
(due to their insignificance compared to the linear 
ones), we obtain the linearized differential equation 
of motion in displacements:
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This expression contains unknown displacements 
in the longitudinal u, circumferential v, and radial w 
directions, as well as the angle of rotation of the 
initial and deformed states ϑ2. By incorporating the 
semi-momentless theory relations (3), we obtain 
a complete system of differential equations.

q C Rwgr z� � �� �1 1 20 5 3, cos cos� � � � ,       (1)
here: qgr  — elastic resistance of the soil medium, 
preventing deformation of the cross-section; C z1  — 
coefficient of subgrade reaction; R — radius of the 
shell; w  — displacement in the radial direction; 
α1 and α2 — coefficients ranging from 0.25 to 0.75, 
which are determined by selection depending on the 
radius of the cylindrical shell.

In solving the given problem, we applied the 
semi-momentless theory of cylindrical shells by 
Vlasov–Novozhilov, based on which the equilibrium 
equations for the cylindrical shell are written as 
follows:
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Transforming expressions (2) taking into account 
the relations of the semi-momentless theory (3):
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we obtain the equation in forces (4):
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Fig. 1. Calculation scheme



73

Andrei Dmitriev, Vladimir Sokolov, Tatyana Maltseva — Pages 70–80
NATURAL VIBRATIONS OF A STEEL-CONCRETE CYLINDRICAL SHELL IN A SOIL MEDIUM

The hinged support of the shell ends is described 
by expressions (6):
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The solution is then carried out using the method 
of separation of variables. The double row for relative 
radial displacement w is written as (7):
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The vibration process for a cylindrical shell, 
occurring according to the harmonic law, is 
represented by the function φ(t) in the form:
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where ωmn is the natural frequency of vibrations.

By substituting expressions (7) and (8) into (5) 
taking into account (9), performing transformation, 
and denoting the coefficients of the unknowns as aij,
we obtain system (10):
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Let us represent system (10) in the form of 
expression (11):
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for which the aij coefficients are determined by 
expressions (12):
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Expression (11) is solved using the matrix 
method, the result of which is presented in the form 
of (13):
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Subsequently, by expanding the determinant, we 
find the eigenvalues λ, where � �� n m,

2  is the square 
of the circular frequency of natural vibrations (1/s2) 
for the cylindrical shell.

Having analyzed the actions of the side 
coefficients of determinant (13), we established that 
their influence on the final result is no more than 
2 %. Therefore, we will consider them equal to zero 
in the future, and determinant (13) takes the form:
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By solving the determinant (14), we obtain 
expressions for determining the frequencies of 
natural vibrations for pipelines:
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here:
n is the number of half-waves in the longitudinal 

direction;
m is the number of half-waves in the circumferential 

direction;
� � �n n R L h� 0 /  is the length parameter of a 

two-layer cylindrical shell;
L is the length of the section (m);
R R Z0 0� �  is the reduced shell radius (m);
R is the radius of the steel layer of the shell (m);
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 is the distance from the 

connection layer to the original surface (m) (Fig. 2);
h1 is the thickness of the concrete layer of the 

shell (m);
h2 is the thickness of the steel layer of the shell 

(m);
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h = h1 + h2 is the wall thickness of the two-layer 
shell (m);

E1 is the modulus of elasticity of the concrete 
layer (N/m2);

E2 is the modulus of elasticity of the steel layer 
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Fig. 2. Geometric dimensions of a two-layer shell
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To calculate the natural frequencies of vibrations 
using the second method, we used the Lira-SAPR 
software. The modeling of each layer of the two-layer 
shell (Fig.  3) was carried out using four-node plate 
elements (Type 41) with dimensions of 0.1×0.1  m. 
Their geometric position corresponded to the position 
of the element of the midsurface for each layer. The 
stiffness characteristics of the layers are shown in 
Fig. 4. To ensure the synergy of the layers, we used 
displacement combinations for each corresponding 
node by setting perfectly rigid bodies (PRB). To fasten 
the shell ends according to the hinged-fixed scheme, 
we introduced a restriction on the linear displacements 
of the boundary nodes along the Z and Y axes.

Modeling of the medium (soil) in which the shell is 
placed was carried out in two ways: 

•	 In the first method, we created a mass 
of universal spatial eight-node isoparametric 
finite elements (Type 36) with dimensions of 
0.1×0.1×0.1  m. The overall size of the created 
medium mass in cross-section is 5.3×5.3  m. The 
stiffness characteristics of the volumetric elements 
of the soil mass are shown in Fig. 5.

•	 There was no soil mass created in the second 
method, and the elastic resistance of the soil was 
accounted for by assigning a coefficient of subgrade 
reaction (Fig. 6) for the plate concrete elements 
С1z  = 473,620 (N/m3) for the first case of soil 
conditions, С1z  = 3,136,416 (N/m3) for the second, 
С1z  = 5,227,360 (N/m3) for the third, and С1z  = 
= 19,878,694 (N/m3) for the fourth.

Only the self-weight of the shell layers was 
considered as external loads (excluding the weight 
of the soil medium). 

We determined natural vibration frequencies 
using “Modal Analysis”, which forms the mass 
matrix of the structure, and the number of natural 
vibration modes, which in this case was set to ten. 
The mass matrix is formed based on the density of 
the elements (Fig. 7).
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Results and discussion
All calculated natural vibration frequencies for 

different section lengths, as well as in various soil 
conditions, are compiled in Table for the ease of 
analysis. The first column presents the results of 
the calculation using expression (15); the second 
column contains the results of the calculation in 
the Lira software package with the set soil medium 
mass; the third one shows the results for the FEM 
with the set coefficient of subgrade reaction С1z. The 
results correspond to seven vibration modes, images 
of which are shown in Fig. 8. For clarity, Fig. 9 shows 
the first three modes of vibration in the soil mass.

Analysis of the data in Table shows:
•	 For the considered section with a length of 

7  m, the minimum frequencies are realized for 
ω12, that is, with the flattening of the cross-section, 
and correspond to shell vibration modes, while for 
sections with lengths of 8 and 9  m, the minimum 
frequencies correspond to the ω11 mode (rod, without 

Fig. 3. Modeling of a composite cylindrical shell

 

Fig. 4. Stiffness of plate elements of a composite shell

a) stiffness of the steel layer      b) stiffness of the concrete layer 
Fig. 5. Soil stiffness

Fig. 6. Coefficient of subgrade reaction of the concrete layer
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Fig. 7. Specification for dynamic impact calculation

Fig. 8. Vibration modes for the considered section of the pipeline

 
ω11 ω12 ω13 ω22 

  
ω23 ω32 ω33 

Fig. 9. Vibration modes for the considered section of the pipeline at n = 1 in the soil mass
(the mass size is 5.3×5.3 m in cross-section)

  
ω11 ω12 ω13 
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Results of determining the natural vibration frequencies by various methods for different soil 
conditions

Analytical 
formula (Hz)

Lira-SAPR 
mass
(Hz)

Lira-SAPR 
coefficient 

of subgrade 
reaction С1z

(Hz)

Analytical 
formula (Hz)

Lira-SAPR 
mass
(Hz)

Lira-SAPR 
coefficient 

of subgrade 
reaction С1z

(Hz)

Analytical 
formula (Hz)

Lira-SAPR 
mass (Hz)

Lira-SAPR 
coefficient 

of subgrade 
reaction С1z

(Hz)
1 2 3 1 2 3 1 2 3

L=7 m (R/L=1/10) L=8 m (R/L=1/11) L=9 m (R/L=1/13)
Peat С1z = 473,620 (N/m3), γgr = 11,770 N/m3; Egr = 5∙105 N/m2; νgr = 0.49.

ω11=71.52 ω11=69.80 ω11=68.99 ω11=55.16 ω11=57.08 ω11=56.04 ω11=43.86 ω11=48.4 ω11=47.14
ω12=64.23 ω12=69.90 ω12=63.13 ω12=62.53 ω12=68.21 ω12=67.58 ω12=61.61 ω12=67.2 ω12=66.54
ω13=169.4 ω13=164.7 ω13=164.4 ω13=169.3 ω13=164.10 ω13=163.8 ω13=169.2 ω13=163.8 ω13=163.5
ω22=109.2 ω22=109.6 ω22=109.3 ω22=92.18 ω22=95.40 ω22=95.01 ω22=81.62 ω22=86.2 ω22=79.20
ω23=174.3 ω23=174.6 ω23=174.3 ω23=172.1 ω23=170.9 ω23=170.6 ω23=170.9 ω23=168.7 ω23= 168.4
ω32=211.9 ω32=186.5 ω32=186.3 ω32=167.4 ω32=154.8 ω32=154.6 ω32=137.6 ω32=132.3 ω32=132.0
ω33=194.6 ω33=199.7 ω33=199.5 ω33=184.4 ω33=188.2 ω33= 187.9 ω33=178.7 ω33= 181.3 ω33= 180.7

Uncompacted fill soil С1z = 3,136,416 (N/m3), γgr = 16,660 N/m3; Egr = 3∙106 N/m2; νgr = 0.35.
ω11=72.45 ω11=70.57 ω11=69.97 ω11=56.37 ω11=58.89 ω11=57.25 ω11=45.38 ω11=50.49 ω11=48.57
ω12=65.94 ω12=71.61 ω12=70.91 ω12=64.29 ω12=70.39 ω12=69.26 ω12=63.39 ω12=69.39 ω12=68.20
ω13=170.17 ω13=166.13 ω13=165.15 ω13=170.05 ω13=165.70 ω13=164.62 ω13=169.98 ω13=165.36 ω13=167.28
ω22=110.22 ω22=110.79 ω22=110.34 ω22=93.37 ω22=97.06 ω22=96.17 ω22=82.97 ω22=88.03 ω22=79.96
ω23=175.03 ω23=175.98 ω23=175.02 ω23=172.87 ω23=172.46 ω23=171.16 ω23=171.72 ω23=170.25 ω23=169.18
ω32=212.39 ω32=187.30 ω32=187.01 ω32=168.07 ω32=155.92 ω32=155.31 ω32=138.43 ω32=133.54 ω32=132.87
ω33=195.23 ω33=200.98 ω33=200.09 ω33=185.07 ω33=189.60 ω33=188.58 ω33=179.44 ω33=182.46 ω33=180.12

Uncompacted fill soil С1z = 5,227,360 (N/m3), γgr = 17,660 N/m3; Egr = 5∙106 N/m2; νgr = 0.35.
ω11=73.17 ω11=71.72 ω11=70.72 ω11=57.30 ω11=60.85 ω11=58.18 ω11=46.53 ω11=51.76 ω11=49.68
ω12=67.26 ω12=73.23 ω12=72.12 ω12=65.64 ω12=72.38 ω12=70.55 ω12=64.76 ω12=71.41 ω12=69.56
ω13=170.75 ω13=167.38 ω13=165.77 ω13=170.63 ω13=167.02 ω13=165.24 ω13=170.57 ω13=166.68 ω13=164.89
ω22=110.99 ω22=111.89 ω22=110.13 ω22=94.29 ω22=98.54 ω22=97.11 ω22=84.01 ω22=89.65 ω22=88.12
ω23=175.59 ω23=177.19 ω23=175.61 ω23=173.43 ω23=173.76 ω23=171.72 ω23=172.29 ω23=171.55 ω23=170.17
ω32=212.79 ω32=188.03 ω32=187.38 ω32=168.58 ω32=156.88 ω32=155.87 ω32=139.05 ω32=134.65 ω32=133.53
ω33=195.73 ω33=202.09 ω33=200.59 ω33=185.59 ω33=190.81 ω33=189.12 ω33=179.98 ω33=183.69 ω33=181.97

Clay С1z = 19,878,694 (N/m3), γgr = 19,620 N/m3; Egr = 2∙107 N/m2; νgr = 0.42.
ω11=78.01 ω11=80.92 ω11=75.81 ω11=64.44 ω11=77.37 ω11=64.32 ω11=53.97 ω11=71.29 ω11=56.79
ω12=75.82 ω12=85.87 ω12=80.09 ω12=74.40 ω12=88.80 ω12=78.98 ω12=73.64 ω12=88.04 ω12=78.11
ω13=174.76 ω13=177.17 ω13=170.14 ω13=174.64 ω13=177.59 ω13=169.49 ω13=174.58 ω13=177.27 ω13=169.16
ω22=116.31 ω22=120.41 ω22=116.59 ω22=100.52 ω22=110.79 ω22=103.32 ω22=90.96 ω22=103.76 ω22=94.94
ω23=179.48 ω23=186.56 ω23=179.59 ω23=177.37 ω23=183.98 ω23=176.02 ω23=176.26 ω23=181.88 ω23=174.27
ω32=215.54 ω32=193.62 ω32=190.64 ω32=172.07 ω32=164.79 ω32=159.78 ω32=143.30 ω32=143.72 ω32=138.08
ω33=199.20 ω33=209.42 ω33=204.08 ω33=189.27 ω33=190.33 ω33=192.81 ω33=183.77 ω33=193.46 ω33=185.81

ω11 ω12 ω13
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cross-sectional deformation). All other vibration 
modes are shell-like.

•	 An increase in the length of the considered section 
by 1 m leads to a decrease in the value of the natural 
vibration frequencies by an average of 1.5–3.0 %, 
regardless of the method used to determine these values.

•	 An increase in the stiffness characteristics of 
the soil medium leads to higher values of the natural 
frequency of the steel-concrete-soil system. This is 
explained by the fact that the soil medium enhances 
the system’s stiffness by preventing deformation 
of the cross-section.

•	 A comparison of the results for determining the 
natural vibration frequencies using expression (15) 
and software calculation shows that the difference 
for the first three frequencies does not exceed 6 %, 
and for the remaining results — 10 %.

•	 The difference in the values of natural 
vibration frequencies determined using the finite 
element method with the specification of the soil 
mass (column 2) and by assigning the coefficient of 
subgrade reaction (column 3) does not exceed 2 %. 
Therefore, to reduce labor costs when creating the 
model, it is recommended to use the second method 
of modeling soil conditions. This method allows 
reducing the model loading time by five times and the 
data processing speed by the processor by at least 
ten times.

The results of the work done allow us to draw the 
following conclusions:

•	 The analytical method for determining 
frequencies using expression (15) has clear 
advantages over the finite element method, as it 
required 40 times less time to compute the data 
while yielding practically identical results.

•	 In the analytical method, the influence of 
internal working pressure can be accounted 

for using parameter p*. However, this factor 
is impossible to apply in the finite element 
method. When modeling this loading, the internal 
pressure is considered not as a force preventing 
the deformation of the cross-section, but as an 
additional mass that acts as a kind of damper, 
resulting in a sharp decrease in frequency values. 
Therefore, all the data in Table 1 were obtained at 
zero internal pressure.

Conclusions
1.	The discrepancy in the natural vibration 

frequencies for the research object, determined 
by the analytical method and the finite element 
method (FEM), does not exceed 10 %, and for the 
first three frequencies of the spectrum, it is no more 
than 6 %. Therefore, all methods are applicable. 
However, the use of an analytical expression allows 
calculations to be performed 40 times faster and 
does not require specialized software, making it 
more advantageous in frequency characteristics 
based design.

2.	When calculating the natural frequencies using 
the finite element method, the second method of setting 
soil conditions allows a 5–6 times reduction in data 
entry time while yielding practically identical results.

3.	Based on the analysis conducted for 
maximum productivity, it is recommended to use 
analytical expression (15) presented in this work 
when designing large-diameter pipeline transport 
structures.
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Аннотация
Введение. Цилиндрические оболочки, уложенные в грунтовую среду, как правило, используются в трубопроводном 
транспорте. Для исключения повреждения трубопроводов бетонными утяжелителями при всплытии конструкции в 
обводнённой среде, предлагается использовать трубобетонные изделия, внутренняя часть которых выполняется 
из стали, а внешняя часть образована бетонным слоем толщиной 30-50 мм. Перед проектировщиком в таком 
случае становится вопрос, какой из методов расчёта использовать для нахождения частот собственных колебаний. 
Цель исследования: Сравнить значения частот собственных колебаний сталебетонного газопровода большого 
диаметра в грунте, полученные при помощи аналитической зависимости со значениями, определёнными в 
программном комплексе ПК Lira. Методы: Первый метод определения частоты основывается на использовании 
аналитического выражения, которое было получено с использованием полубезмоментной теории цилиндрических 
оболочек. Второй базируется на методе конечных элементов с построением расчётной модели в среде Lira 
Sapr. Моделирование в программном комплексе слоёв стали и бетона композитной оболочки осуществлялось 
4-х узловыми пластинами, которые объединены в общую структуру при помощи абсолютно жёстких тел (АЖТ). 
Учёт грунтовой среды, окружающей оболочку, в первом случае выполнялся путём создания массива (размером 
5,3×5,3 метров) объемными телами, во втором случае путём задания коэффициента пастели для бетонного слоя. 
Результаты: Установлено, что второй способ задания грунтовых условий позволяет сократить время ввода данных 
в 5-6 раз при одинаковых результатах. Расхождение частот собственных колебаний для объекта исследования, 
определённых аналитическим методом и МКЭ не превышает 10 %, а для первых 3-х частот спектра не более 6 %, 
следовательно, все методы применимы. Однако использование аналитического выражения позволяет вычислять 
результаты в 10 раз быстрее и не требует специализированного программного обеспечения, поэтому является 
более выгодным при отстройке конструкции по частотным характеристикам.

Ключевые слова: собственные колебания; метод конечных элементов; полубезмоментная теория цилиндрических 
оболочек; частота.
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