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Abstract

Introduction. Cylindrical shells embedded in the soil medium are generally used in pipeline transportation. To prevent
damage to pipelines by concrete weights when the structure surfaces in a waterlogged environment, it is proposed to
use concrete pipe products, with the inner part made of steel and the outer part formed by a concrete layer 30-50 mm
thick. In this case, the designer faces the question of which calculation method to use for determining the natural vibration
frequencies. Purpose of the study: To compare the values of natural vibration frequencies of a large-diameter steel-
concrete gas pipeline in the ground, obtained using an analytical dependency, with the values determined in the Lira
software package. Methods: The first method of determining frequency is based on an analytical expression obtained
using the semi-momentless theory of cylindrical shells. The second method is based on the finite element method with the
construction of a computational model in the Lira-SAPR software. Modeling of steel and concrete layers of the composite
shell in the software package was carried out using 4-node plates, which are combined into a common structure with the
help of perfectly rigid bodies (PRB). In the first case, the calculation for the soil medium surrounding the shell was carried
out by creating a mass (measuring 5.3x5.3 meters) using volumetric bodies, while in the second case, it was done by
setting a coefficient of subgrade reaction for the concrete layer. Results: We established that the second method of setting
soil conditions allows a 5—6 times reduction in data entry time while achieving the same results. The discrepancy in the
natural vibration frequencies for the research object, determined by the analytical method and the finite element method
(FEM), does not exceed 10 %, and for the first three frequencies of the spectrum, it is no more than 6 %. Therefore, all
methods are applicable. However, the use of an analytical expression allows calculations to be performed 10 times faster
and does not require specialized software, making it more advantageous in the design based on frequency characteristics.

Keywords: natural vibrations; finite element method; semi-momentless theory of cylindrical shells; frequency.

Introduction

Cylindrical shells laid in a soil medium are
generally used in the oil and gas industry for the
transportation of hydrocarbons. The main pipeline
is a multi-kilometer structure that is laid in various
soil conditions, including areas with anticipated
waterlogging and in waterlogged soils. Balancing
of such sections is carried out using encircling
concrete weights, which can damage the original
geometry of the pipe section during maintenance
or operation, thereby negatively affecting the
reliability of the structure. One of the options to
prevent such scenarios is the use of concrete
pipe products, where the inner part is made of
large-diameter steel pipes (d<1000 mm) with a
parameter of 0.015 < h/R < 0.05, and the outer
part is formed by a concrete layer 30-50 mm thick.
The reliability of such structures must be ensured
by proper calculations during the design phase,
one of the tasks of which is to ensure vibration
resistance. In this case, the designer faces the
question of which calculation method to use to
determine the frequencies and modes of natural
vibrations when constructing the pipeline based on
frequency characteristics.

In the analyzed open sources published over
the last 10 years, an approach using analytical
expressions is proposed, as well as the application
of the semi-analytical finite element method (FEM)
in various software packages. For example, in the
works of Shao et al. (2022), Shui et al. (2023),
and Tan and Tang (2023), it is proposed to use
analytical dependencies, which were obtained
for a calculation scheme in the form of a rod, to
determine the natural vibration frequencies of
single-layer pipelines, taking into account the flow
velocity of the fluid. This approach does not account
for the deformation of the section and can be used
for thick-walled cylindrical shells with parameters
0.07 <h/R < 0.125. Vibrational processes for
cylindrical shells partially supported on the ground,
based on the rod theory, were investigated by Xu
et al. (2018). Leontiev and Travush (2020) studied
the vibrations of an underwater pipeline for the
pipe-fluid-soil system; however, the paper does not
cover the issue of internal working pressure, which
prevents the deformation of the cylindrical shell
in the radial direction and is undoubtedly present
during the transportation of oil or gas products.
Shakiryanov and Akhmedyanov (2020) as well as
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Yulmukhametov et al. (2020) studied the influence
of internal non-stationary pressure on bending
vibrations for computational models of closed
cylindrical shells, but did not address the issue of
the external environment surrounding the shell.
Farshidianfar and Oliazadeh (2012), Lee and Kwak
(2015), Oliazadeh et al. (2013) used various shell
theories to determine the natural frequencies of
pipeline vibrations: Soedel, Fligge, Morley-Koiter,
and Donnell. The result of the solution using these
theories is a determinant, which, when extended,
calculates the frequency of natural vibrations. The
work by Piacsek and Harris (2019) is analogous, but
with the focus on aluminum structures. In (Kumar et
al., 2015) and (Kumar et al., 2017), radial oscillations
are studied without considering soil conditions,
and the solution is obtained using the semi-
momentless theory of cylindrical shells by Vlasov—
Novozhilov. In (Sokolov and Razov, 2020), analytical
dependencies were obtained for determining the
natural vibration frequencies of semi-underground
large-diameter pipelines. In (Bochkarev, 2022),
a similar approach was implemented for a two-
parameter foundation, but without considering the
effect of longitudinal compressive force and internal
pressure. Shahbaztabar et al. (2019) examined the
natural frequencies of a metal-ceramic cylindrical
shell embedded in a Pasternak elastic foundation,
but did not consider internal pressure. The works by
Alshabatatand Zannon (2021), Baghlani etal. (2020),
and Ebrahimi (2022) were dedicated to three-layer
shells. However, the functionality of the solutions
obtained is extremely limited, as they do not take
into account the internal pressure on the shell wall,
the longitudinal compressive force, or the resistance
of the medium that prevents wall deformation. Jain
et al. (2016) used a software based on the finite
element method and developed a methodology
for modeling and determining the natural vibration
frequencies for a cylindrical shell in ANSYS with
various types of constraints, but without considering
the external environment, and compared the values
with the previously obtained results. Kumar et al.
(2015) used ABAQUS to model and determine the
frequency spectrum, while Dyachenko et al. (2019)
used the ANSYS software; subsequently, the authors
compared the obtained results with the results of
calculations using analytical formulas. Dashevskij
et al. (2021) obtained the natural frequencies for a
metro tunnel using MSC Patran/Nastran software,
but without using analytical dependencies. The
literature review shows that numerous works are
dedicated to this topic, and the approaches to solving
the problem are diverse.

The aim of this work is to analyze the influence of
soil conditions on the values of the natural vibration
frequencies for a steel-concrete pipeline, as well as
to compare the obtained results for the two proposed

methods for determining frequencies to identify the
optimal approach to solving the problem.

Subject, objectives, and methods

The object of the study is a section of a cylindrical
two-layer shell designed for the transportation
of natural gas, with a radius of the main steel
layer R = 0.71 m and a thickness of h, = 18 mm.
The thickness of the second concrete layer is
h, = 40 mm. The length of the considered section
of the cylindrical shell is taken as 7, 8, and 9 m. The
moduli of elasticity for concrete and steel, as well
as the density of the layers, are respectively equal
to E, = 3.24711-10"° (N/m?), E, = 2.06-10" (N/m?),
y, =24,516.6 (N/m?®), y, = 76,982.2 (N/m3). The
Poisson’s ratio for steel and concrete of class B30
is assumed to be v = 0.3. The internal pressure is
assumed to be p, = 0 MPa, and the longitudinal
compressive force is also not considered.

The problem considers four types of soil
conditions:

e In the first case, the structure is placed in
a peat mass with the following parameters: soil
density y_ = 11,770 N/m3; soil modulus of elasticity
E, = 500,000 N/m?; soil Poisson’s ratio v, = 0.49.

e In the second case, the soil medium is
represented by uncompacted fill soil with the
following parameters: soil density y_ = 16,660 N/m?;
soil modulus of elasticity Egr = 3,000,000 N/m?; sail
Poisson’s ratio v_ = 0.35.

e The third case considers compacted fill soil with
the following parameters: soil density v, = 17,660 N/m?;
soil modulus of elasticity Egr = 5,000,000 N/m?; sail
Poisson’s ratio v_ = 0.35.

e The fourth case is clay: soil density vy
= 19,620 N/m?; soil elasticity modulus Egr
20,000,000 N/m?; soil Poisson’s ratio v, = 0.42.

The first method for determining the natural
frequency is based on the use of an analytical
expression derived for the calculation scheme
shown in Fig. 1.

We consider a section of a steel gas pipeline in a
concrete casing, with the ends of the section assumed
to be hinged. The pipeline is buried in the ground no
more than half its diameter from the top generatrix
to the ground level. In the governing equation for
this situation, in addition to the internal pressure p,in
the cylindrical shell, the elastic resistance of the soil
medium q_, is taken into account, while the active
soil pressure on the wall of the cylindrical shell is not
considered, as it is minimal. The added mass of the
soil, which may be involved in the vibration, and the
longitudinal compressive force that appears during
thermal deformations or uneven settlement of the
structure, are also not taken into account.

The resistance of the soil medium is assumed to
be radial and is described by expression (1), which
corresponds to the distribution pattern along the
circumference of the shell as shown in Fig. 1:
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q,;-C,Rw(0,5- a,c0s0 - a,c0s30)

Fig. 1. Calculation scheme

dgr = C,Rw(0,5—0y cosO—ap cos30), (1)
here: g, — elastic resistance of the soil medium,
preventing deformation of the cross-section; C;, —
coefficient of subgrade reaction; R — radius of the
shell; w — displacement in the radial direction;
a, and a, — coefficients ranging from 0.25 to 0.75,
which are determined by selection depending on the
radius of the cylindrical shell.

In solving the given problem, we applied the
semi-momentless theory of cylindrical shells by
Vlasov—Novozhilov, based on which the equilibrium
equations for the cylindrical shell are written as
follows:

a—Ti‘l‘a—S"rRQz'C:—RXl,
o0& 00
%+8S+£*Q2 =-RX,,

26 0t R}

0
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ot 00 00 ot

Transforming expressions (2) taking into account
the relations of the semi-momentless theory (3):

@+W:0;6_v+6_u:0;82:6_w_v . (3)
00 0¢ 00 00
we obtain the equation in forces (4):

o1, +Q[TaM2j_ 18 [R*asz_

g2 el 00 ) R2 003\ 0 00
2 *
Lo 1 oMy ) & IRy,
00\ R, 00 | 00*| R
2
R%_Raﬁ_a_(R;)Q):(). (4)
& 06 90?

72

2
Inertial components XI:—thoa—Z in the
ot

0%
X2=—th0— in the
o1

longitudinal  direction,

circumferential direction, as well as
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in the radial direction are substituted into (4) and
considering the dependencies between forces and
deformations, displacements and deformations,
without taking into account the nonlinear components
(due to their insignificance compared to the linear
ones), we obtain the linearized differential equation
of motion in displacements:
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This expression contains unknown displacements
in the longitudinal u, circumferential v, and radial w
directions, as well as the angle of rotation of the
initial and deformed states J,. By incorporating the
semi-momentless theory relations (3), we obtain
a complete system of differential equations.

2 2
R
—a—zclz{a—wcos%—%6sin39—9wcos39} =0. (5)
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The hinged support of the shell ends is described
by expressions (6):

L L
V{azoaazzzo}a92{§:03§:E:0}9
2
w{a=o,a=§=0} v {a 0.6=% —} (6)
ot?

The solution is then carried out using the method
of separation of variables. The double row for relative
radial displacement w is written as (7):

w=">"b,, ¢(t) sin(h,,&) cos(mb). (7)

We determine displacements u, v, as well as &,
from (7) taking into account (3); they are described
by expressions (8):

u=22 by _}LZ o(t) cos(r,&) cos(mb);
m n m
v=Z b L 9(0) sin(h,&) sin(m);
m

9, = —Z men (P(t) sin(},,€) sin(m0). (8)

The V|brat|on process for a cylindrical shell,
occurring according to the harmonic law, is
represented by the function ¢(t) in the form:

0(1) =sin @y, 15 0" (1) =~ sin 1, 9)
where w_is the natural frequency of vibrations.

By substituting expressions (7) and (8) into (5)
taking into account (9), performing transformation,
and denoting the coefficients of the unknowns as aj,
we obtain system (10):

m=1 al,lbl +a1’2b2 +al’3b3 =0;

m=2 a2]b1+a22b2+a23b3+a24b4=0;

m=3 a3,1b1 + a3’2b2 + a3,3b3 + 113’4b4 + a5’5b5 = 0,

m=i al-,lbl +a~2b2 +Cl~3b3 +a~4b4+

+a; sbs +..+a; jb; =0. (10)

Let us represent system (10) in the form of
expression (11):
b

m3n Ap,m—1

b b, .+

A,m=3 mln A,mOm,n
mm+1b +ln+am m+3bm+3n =0, (11)

for which the aj; coefficients are determined by
expressions (12):

m (m * 1)
Dpm = An, B (’)nm’ Dnmtl = qurab
m [(m+3) —1] =
am,mi3 = 2 qgra23
*
Ay =M+ (m? = 1)(m® —1+ L)1
+C'm* —kf,m“P / n?;

By =p Rh(OZhy +m* +m*). (12)

Expression (11) is solved using the matrix
method, the result of which is presented in the form
of (13):

dll_;\' dlz d13 dl4 ..... dl}’l
dzl d22 _>\4 d23 d24 ..... dzn
d d dyz; — A dyy . d
31 32 33 34 3n o, (13)
d41 d42 d43 d44 77& ..... d4n
dp_41 dp_31 dp_21 dp—ll ..... dp}'l —7\,
where:
Om m D m+l D, m+3
dm m = B > dm,mil > dm,miZ = B >
n,m n,m n,m
and the coefficients 4, ,,,B, > m+1>0mme3 are

found using (12).
Subsequently, by expanding the determinant, we

is the square

of the circular frequency of natural vibrations (1/s2)
for the cylindrical shell.

Having analyzed the actions of the side
coefficients of determinant (13), we established that
their influence on the final result is no more than
2 %. Therefore, we will consider them equal to zero
in the future, and determinant (13) takes the form:

find the eigenvalues A, where A = mﬁ’m

dy-~ 0 0 0 ... 0
0 dp-L 0 0 ... 0
0 dyi-r 0 ... 0 0.1
0 0 0  dyy—r . 0 | (14)
0 0 0 0 .. dpyy =1

By solving the determinant (14), we obtain
expressions for determining the frequencies of
natural vibrations for pipelines:

7»3+n~m4(m2—1)[m2—1+p]+C1*Z-m4

1 n

(Dnm:% " 7 1 2 ,(15)
psh-R0~h(7»nh\,+m +m )

here:
n is the number of half-waves in the longitudinal
direction;
misthe numberof half-wavesinthe circumferential
direction;
A, =nmRy/L\/h, is the length parameter of a
two-layer cylindrical shell;
L is the length of the section (m);
Ry = R—Z, is the reduced shell radius (m);
Ris the radlus of the steel layer of the shell (m);
Eyhi — )l
ZO -]
2(Eyhy + Eyhy)
connection layer to the original surface (m) (Fig. 2);
h, is the thickness of the concrete layer of the
shell (m);
h, is the thickness of the steel layer of the shell

(m);

is the distance from the
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concrete

Fig. 2. Geometric dimensions of a two-layer shell

h = h, + h, is the wall thickness of the two-layer
shell (m);

E, is the modulus of elasticity of the concrete
layer (N/m2);

E, is the modulus of elasticity of the steel layer
(N/m2);

h, =h/R, /12(1—v2) is the parameter of the

relative thickness of the shell;
v is Poisson’s ratio;
n=E, / E, is inhomogeneity coefficient;

EV:(I—VZ)-IZD/h3 is reduced modulus of

elasticity (bending);
1
D =—X

3(1-v?)
><|:E1 {(h1 ~7Z,) +Z§}+E2 {(h2 +7) —23}}

is reduced bending stiffness;
Ey =[Ejh +Eyhy]/h is reduced modulus of

elasticity (tension/compression);
P =po (RO /th-hvz) is internal working pressure

parameter;
p, is internal pressure in a two-layer shell (N/m?);

Pu :pO(RO/EO-h-hf) is the parameter of the
material density of the shell (s2/m?);
pozl[(ylh1+\(2h2)/h] is the reduced specific
g

weight of the shell material (N-s2/m3);

y, is density of concrete (N/md);

v, is density of steel (N/m?);

Cl*z = R(%Clz /Egrh-hv2 is the reduced coefficient of
subgrade reaction;

Ci- =Eg. /Ry (1 +Vgr) is the coefficient of
subgrade reaction for a cylindrical shell (N/m3);

Egr is modulus of elasticity for soil (N/m?).
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To calculate the natural frequencies of vibrations
using the second method, we used the Lira-SAPR
software. The modeling of each layer of the two-layer
shell (Fig. 3) was carried out using four-node plate
elements (Type 41) with dimensions of 0.1x0.1 m.
Their geometric position corresponded to the position
of the element of the midsurface for each layer. The
stiffness characteristics of the layers are shown in
Fig. 4. To ensure the synergy of the layers, we used
displacement combinations for each corresponding
node by setting perfectly rigid bodies (PRB). To fasten
the shell ends according to the hinged-fixed scheme,
we introduced a restriction on the linear displacements
of the boundary nodes along the Z and Y axes.

Modeling of the medium (soil) in which the shell is
placed was carried out in two ways:

e In the first method, we created a mass
of universal spatial eight-node isoparametric
finite elements (Type 36) with dimensions of
0.1%x0.1%x0.1 m. The overall size of the created
medium mass in cross-section is 5.3x5.3 m. The
stiffness characteristics of the volumetric elements
of the soil mass are shown in Fig. 5.

e There was no soil mass created in the second
method, and the elastic resistance of the soil was
accounted for by assigning a coefficient of subgrade
reaction (Fig. 6) for the plate concrete elements
C,, =473,620 (N/m3) for the first case of soil
conditions, C, = 3,136,416 (N/m?) for the second,
C,, =5,227,360 (N/m®) for the third, and C, =
= 19,878,694 (N/m?3) for the fourth.

Only the self-weight of the shell layers was
considered as external loads (excluding the weight
of the soil medium).

We determined natural vibration frequencies
using “Modal Analysis”, which forms the mass
matrix of the structure, and the number of natural
vibration modes, which in this case was set to ten.
The mass matrix is formed based on the density of
the elements (Fig. 7).
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Fig. 3. Modeling of a composite cylindrical shell
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Fig. 4. Stiffness of plate elements of a composite shell

Results and discussion

All calculated natural vibration frequencies for
different section lengths, as well as in various soil
conditions, are compiled in Table for the ease of
analysis. The first column presents the results of
the calculation using expression (15); the second
column contains the results of the calculation in
the Lira software package with the set soil medium
mass; the third one shows the results for the FEM
with the set coefficient of subgrade reaction C, . The
results correspond to seven vibration modes, images
of which are shown in Fig. 8. For clarity, Fig. 9 shows
the first three modes of vibration in the soil mass.

Analysis of the data in Table shows:

e For the considered section with a length of
7 m, the minimum frequencies are realized for
w,,, that is, with the flattening of the cross-section,
and correspond to shell vibration modes, while for
sections with lengths of 8 and 9 m, the minimum
frequencies correspond to the w,, mode (rod, without

Stiffness for solids

[ Account of orthotropy
e[ e 0 = [s
v V21 0 Vi3 |0
v31 |0 ¥2z |0 Y3z |0
Gz |0 G130 G23 |0

Monli ter
orearporameters U, (i |ums

NIm2

q
E Calour
Step-type
Iterative
Comments
Soi |
[v][X][?]

Fig. 5. Soil stiffness
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[ Assign to elements -|
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) From sail model =]
Pz
Group -0 | J‘(_E—I
[ Soimodd |
(@) Assign
Ciz  [473620] Nim?#
o
Calculate C1. C2
Bc=B Bc 0. mm
| Account of Cly,
cy O Nim?
Cxy 0 Nim
He |0 mm
() Muttiply by a factor of n {C=C"n}
Angle of soil zone
L . rad

Fig. 6. Coefficient of subgrade reaction of the concrete layer
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Fig. 7. Specification for dynamic impact calculation
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Fig. 8. Vibration modes for the considered section of the pipeline
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Fig. 9. Vibration modes for the considered section of the pipeline at n = 1 in the soil mass
(the mass size is 5.3%x5.3 m in cross-section)
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Results of determining the natural vibration frequencies by various methods for different soil

conditions
Lira-SAPR Lira-SAPR Lira-SAPR
Analytical Lira-SAPR | coefficient Analytical Lira-SAPR | coefficient Analytical Lira-SAPR coefficient
formula (Hz) mass of sul_)grade formula (Hz) mass of sul_)grade formula (Hz) | mass (Hz) of sul_)grade
(Hz) reactionC, (Hz) reactionC,, reactionC
(Hz) (Hz) (Hz)
1 2 3 1 2 3 1 2 3
L=7 m (RIL=1/10) L=8 m (RIL=1/11) L=9 m (R/IL=1/13)
Peat C,, =473,620 (N/m°), y, = 11,770 N/m?; E_ = 510°N/m?; v, = 0.49.
w,=71.52 w,,=69.80 w,,=68.99 w,,=55.16 w,,=57.08 w,,=56.04 w,,=43.86 w,,=48.4 w,=47.14
w,,=64.23 w,,=69.90 w,,=63.13 w,,=62.53 w,,=68.21 w,,=67.58 w,,=61.61 w,,=67.2 w,,=66.54
w,,=169.4 w,,=164.7 w,,=164.4 w,,=169.3 w,,=164.10 w,,=163.8 w,,=169.2 w,,=163.8 w,,=163.5
w,,=109.2 w,,=109.6 w,,=109.3 w,,=92.18 w,,=95.40 w,,=95.01 w,,=81.62 w,,=86.2 w,,=79.20
w,,=174.3 w,,=174.6 w,,=174.3 w,,=172.1 w,,=170.9 w,,=170.6 w,,=170.9 w,,=168.7 w,,= 168.4
w,,=211.9 w,,=186.5 w,,=186.3 w,,=167.4 w,,=154.8 w,,=154.6 w,,=137.6 w,,=132.3 w,,=132.0
w,,=194.6 w,,=199.7 w,,=199.5 w,,=184.4 w,,=188.2 w,,=187.9 w,,=178.7 w,,=181.3 w,,= 180.7
Uncompacted fill soil C,, = 3,136,416 (N/m°), y = 16,660 N/m®; E_ =3-10° N/m? v, =0.35.
w,=72.45 w,,=70.57 w,,=69.97 w,,=56.37 w,,=58.89 w,=57.25 w,,=45.38 w,,=50.49 w,,=48.57
w,,=65.94 w,,=71.61 w,,=70.91 w,,=64.29 w,,=70.39 w,,=69.26 w,,=63.39 w,,=69.39 w,,=68.20
w,=17017 | w,=166.13 | w,=165.15 | w,=170.05 | w,,=165.70 | w,=164.62 | w,,=169.98 | w,,=165.36 w,,=167.28
w,,=110.22 | w,=110.79 | w,=110.34 | w,=93.37 w,,=97.06 w,,=96.17 w,,=82.97 w,,=88.03 w,,=79.96
w,,=175.03 | w,=175.98 | W,=175.02 | W,=172.87 | w,=17246 | Ww,=171.16 | W,=171.72 | w,=170.25 w,,=169.18
w,,=212.39 | w,,=187.30 | w,,=187.01 | w,,=168.07 | w,=155.92 | w,,=155.31 | w,,=138.43 | w,,=133.54 w,,=132.87
w,,=195.23 | w,,=200.98 | w,,=200.09 | w,,=185.07 | w,=189.60 | w,=188.58 | w,,=179.44 | w,,=182.46 w,,=180.12
Uncompacted fill soil C,, = 5,227,360 (N/m°), y_ = 17,660 N/m? E = 5-10° N/m? v_ = 0.35.
w,=73.17 w,=71.72 w,=70.72 w,,=57.30 w,,=60.85 w,,=58.18 w,,=46.53 w,,=51.76 w,,=49.68
w,,=67.26 w,,=73.23 w,=72.12 w,,=65.64 w,,=72.38 w,,=70.55 w,,=64.76 w,,=71.41 w,,=69.56
w,=170.75 | w,=167.38 | w,=165.77 | w,=170.63 | w,,=167.02 | w,=16524 | w,=170.57 | w,,=166.68 w,,=164.89
w,,=110.99 | w,=111.89 | w,=110.13 | w,,=94.29 w,,=98.54 w,,=97.11 w,,=84.01 w,,=89.65 w,,=88.12
W,,=175.59 | w,,=177.19 | w,=175.61 | w,=173.43 | w,=173.76 | Ww,=171.72 | w,=172.29 | w,=171.55 w,,=170.17
w,,=212.79 | w,,=188.03 | w,,=187.38 | w,,=168.58 | w,=156.88 | w,=155.87 | w,,=139.05 | w,,=134.65 w,,=133.53
W,,=195.73 | w,,=202.09 | w,,=200.59 | w,,=185.59 | w,=190.81 | w,=189.12 | w,=179.98 | w,,=183.69 w,,=181.97
Clay C,, = 19,878,694 (N/m®), Y, = 19,620 N/m?; E, = 2-10" N/m?; v, = 042.
w,,=78.01 w,,=80.92 w,,=75.81 w,,=64.44 W, =77.37 w,,=64.32 w,,=53.97 w,=71.29 w,,=56.79
w,,=75.82 w,,=85.87 w,,=80.09 w,,=74.40 w,,=88.80 w,,=78.98 w,,=73.64 w,,=88.04 w,,=78.11
w,=17476 | w,=17717 | w,=170.14 | W, =17464 | w,=17759 | w,=16949 | w,=17458 | w,=177.27 w,,=169.16
w,,=116.31 | w,,=120.41 | w,,=116.59 | w,,=100.52 | w,=110.79 | w,,=103.32 w,,=90.96 w,,=103.76 w,,=94.94
w,,=179.48 | w,,=186.56 | W,,=179.59 | W,,=177.37 | w,=183.98 | w,=176.02 | w,=176.26 | w,,=181.88 w,,=174.27
w,,=215.54 | w,,=193.62 | w,,=190.64 | w,,=172.07 | w,=164.79 | w,=159.78 | w,=143.30 | w,,=143.72 w,,=138.08
w,,=19920 | w,=209.42 | w,,=204.08 | w,,=189.27 | w,=190.33 | w,=192.81 | w,=183.77 | w,=193.46 w,,=185.81
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cross-sectional deformation). All other vibration
modes are shell-like.

¢ Anincrease in the length of the considered section
by 1 m leads to a decrease in the value of the natural
vibration frequencies by an average of 1.5-3.0 %,
regardless of the method used to determine these values.

e An increase in the stiffness characteristics of
the soil medium leads to higher values of the natural
frequency of the steel-concrete-soil system. This is
explained by the fact that the soil medium enhances
the system’s stiffness by preventing deformation
of the cross-section.

o A comparison of the results for determining the
natural vibration frequencies using expression (15)
and software calculation shows that the difference
for the first three frequencies does not exceed 6 %,
and for the remaining results — 10 %.

e The difference in the values of natural
vibration frequencies determined using the finite
element method with the specification of the soil
mass (column 2) and by assigning the coefficient of
subgrade reaction (column 3) does not exceed 2 %.
Therefore, to reduce labor costs when creating the
model, it is recommended to use the second method
of modeling soil conditions. This method allows
reducing the model loading time by five times and the
data processing speed by the processor by at least
ten times.

The results of the work done allow us to draw the
following conclusions:

e The analytical method for determining
frequencies using expression (15) has clear
advantages over the finite element method, as it
required 40 times less time to compute the data
while yielding practically identical results.

e In the analytical method, the influence of
internal working pressure can be accounted

78

for using parameter p’. However, this factor
is impossible to apply in the finite element
method. When modeling this loading, the internal
pressure is considered not as a force preventing
the deformation of the cross-section, but as an
additional mass that acts as a kind of damper,
resulting in a sharp decrease in frequency values.
Therefore, all the data in Table 1 were obtained at
zero internal pressure.

Conclusions

1.The discrepancy in the natural vibration
frequencies for the research object, determined
by the analytical method and the finite element
method (FEM), does not exceed 10 %, and for the
first three frequencies of the spectrum, it is no more
than 6 %. Therefore, all methods are applicable.
However, the use of an analytical expression allows
calculations to be performed 40 times faster and
does not require specialized software, making it
more advantageous in frequency characteristics
based design.

2.When calculating the natural frequencies using
the finite element method, the second method of setting
soil conditions allows a 56 times reduction in data
entry time while yielding practically identical results.

3.Based on the analysis conducted for
maximum productivity, it is recommended to use
analytical expression (15) presented in this work
when designing large-diameter pipeline transport
structures.
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COBCTBEHHbIE KONEBAHUA CTANNIEBETOHHOWU UMNUHOPUYECKON
OBOJIOYKU B TPYHTOBOW CPEQIE

AHgpen Buktoposuy Omutpres™ (Andrei Dmitriev), Bnagumup Ipuropsesuy Cokonos (Viadimir Sokolov),
TaTbsiHa BnagumuposHa ManbueBa (Tatyana Maltseva)

TioMeHcKkMIA MHAOYCTpUanbHbIn yHUBepcuTeT, yn. Bonogapckoro, 38, TiomeHb, Poccus
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AHHoOTauus

BeeaeHue. LiunnHapunyeckne 060noyku, yNnoxeHHbIe B FPYHTOBYIO Cpeay, Kak NpaBurio, UCNosnb3ykoTcs B TPy6oNpoBoaHOM
TpaHcnopTe. [ns ncknoveHns noBpexaeHunst TpybonpoBoaoB BETOHHLIMU YTSXKENUTENSMU MPU BCMMbITUN KOHCTPYKLIMN B
06BOAHEHHON cpefe, NpeanaraeTcs UCnonb3oBaTh TPYO0OETOHHbIE U3AENUs, BHYTPEHHSSA YacTb KOTOPbIX BbIMOMHAETCS
M3 cTanu, a BHeLHsIs 4YacTb obpa3oBaHa GeTOHHbIM croeM TonwmHo 30-50 mm. Nepen NPOEKTMPOBLUMKOM B TakOM
crnyyae CTaHOBUTCS BOMPOC, KaKoW 13 METOA0B pacyéTa UCMomnb30BaTh A5l HAXOXAEHNS YacTOT COOCTBEHHbIX KonebaHun.
Llenb uccnegoBaHus: CpaBHUTb 3HAYEHMS1 YacTOT COBCTBEHHbIX KorebaHuii ctanebeToHHOro rasonposoga 6onbLuoro
OvameTtpa B TpyHTe, MOMyYeHHble MpU MOMOLLM aHaNUTUYECKOW 3aBUCUMOCTU CO 3HAYEHUSIMW, OnpedenéHHbIMU B
nporpammHoM komnnekce K Lira. MeTtoabl: MNepBbi MeTOA onpeaeneHns 4acTtoTbl OCHOBLIBAETCS HA UCNONb30BaHUN
aHanMTUYECKOro BbipaXXeHUs!, KOTOPOE BbINo MNOSyYEHO C UCMOMb30BaHWEM MoNy6Ee3MOMEHTHON TEOPUN LIMITMHOPUYECKUX
obonoyek. Bropon 6Gasupyercs Ha MeTode KOHEYHbIX 3NIEMEHTOB C MOCTPOEHMEM pacyéTHOW mogenu B cpepe Lira
Sapr. MogenupoBaHne B NporpaMMHOM KOMMIEKCe CrOEB cTanu M GeToHa KOMMO3WTHOM OOOMOYKM OCYLLECTBMANOCH
4-x y3noBbIMU NracTMHaMu, KOTopble 06beanHeHbI B 06OLLY0 CTPYKTYpY MpW MOMOLLM aBComnoTHO XEcTkux Ten (AXKT).
Y4YET rpyHTOBOW cpefbl, OKpy»KatoLLen 060MouKy, B NEPBOM Criydae BbIMOMHANCSA NyTEM CO34aHUsi Maccusa (pasmepom
5,3%5,3 MmeTpoB) 0O6beMHbIMM TENaMu, BO BTOPOM cryvae NyTéM 3agaHus koadduumeHTa nactenu anst 6eToHHoro crnosi.
Pe3ynbraThl: YCTaHOBMEHO, YTO BTOPOI CNOco6 3aAaHusi rpyHTOBbIX YCITOBUI NO3BONSIET COKPATUTL BPEMS BBOAA AAHHbIX
B 5-6 pa3 npu oaMHaKoBbIX pesynbraTtax. PacxoxaeHue 4actoT cOOGCTBEHHbIX konebaHui ans obbekTa uccnenoBaHus,
onpeaenéHHbix aHanutTudeckum metogom n MK He npesbiwaeT 10 %, a ons nepBbiX 3-x 4acToT cnekTpa He 6onee 6 %,
crnepoBaTenbHO, Bce MeToAbl NpuMeHnMbl. OgHaKo UCMONb30BaHWe aHaNUTUYECKOrO BblpaXKeHUs1 NO3BOMSET BbIYMUCISATb
pesynstaTtel B 10 pa3 GbicTpee u He TpebyeT cneumanvM3anpoBaHHOIO NPOrpaMMHOro obecneyeHusi, Mo3ToOMy SIBNSIETCH
6onee BbIrOAHBLIM NPY OTCTPOMKE KOHCTPYKLMM MO YaCTOTHLIM XapaKTepUCTUKaM.

KnrouyeBble cnoBa: cOGCTBEHHbIE KONebaHUs; METOA KOHEYHbIX 311IEMEHTOB; I'IOJ'Iy693MOM9HTHaF| Teopua ULMNnHgpU4ecKnx
obornoyek; YyacToTa.
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