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Abstract

Introduction: The building industry is under increasing pressure to maximize performance while reducing the costs and
the environmental impact. To solve this problem, a new type of materials, i.e., functionally graded materials (FGMs), are
proposed. These materials have the advantage of being able to withstand harsh environments without losing their properties.
Purpose of the study: The paper aims to further extend the understanding of the propagation modes and characteristics
of guided waves in FGM cylinders with infinite lengths. In the course of the study, we analyzed a cylindrical shell composed
of three annular layers, each separated by a gradient layer across the wall thickness. A modeling tool based on the
Legendre orthogonal polynomial method is proposed in the paper. Methods: The method applied results in an eigenvalue/
eigenvector problem. The boundary conditions are integrated into the constitutive equations of guided wave propagation.
The phase velocity and normalized frequency dispersion curves are calculated. Besides, the displacement distributions
and stress field profiles for a functionally graded cylinder with various graded indices in both modes (axisymmetric and
symmetric) are calculated and discussed. The results show a constant fluctuation of effective FGM material. Results:
It was found that the phase velocity curves of the same mode decrease as the exponents of the power law increase. In
addition, the boundary conditions have a greater impact on the normal stresses. The accuracy and effectiveness of the
improved orthogonal polynomial method are demonstrated through a comparison of the exact solution obtained by an

analytical-numerical method and our numerical results.

Keywords: guided waves, Legendre polynomial method, functionally graded materials (FGMs), dispersion curves.

Introduction

Material structures are becoming more complex
and delicate due to recent scientific advancements
in materials. Functionally graded materials (FGMs)
have emerged as a result of exciting developments
in engineering and material processing. FGMs
are created in order to achieve higher levels of
performance. In fact, FGMs are a class of composite
materials with graded structure and characteristics
changing spatially in the thickness direction. These
materials have a graded interface rather than a sharp
interface between two dissimilar materials. The
purpose of choosing graded materials, particularly
at the interface between layers, is to reduce inter-
laminar stress discontinuities. These can occur
around the edges of laminates due to material
incompatibility across the interface. The interface
between two layers in FGM is typically seen as having
seamless bonding, with properties that progressively
change based on their thickness. The properties
of FGM change continuously from one surface to
another due to the effective monotonic variation in
the volume fraction of the constituent phases. That
enables the elimination of stress discontinuity in most

searches, including layered structures made of two
materials. The primary advantage of these materials
is their ability to adjust specific thermomechanical
properties through a continuous spatial distribution,
resulting in increased resistance to interfacial failure
(Yang and Liu, 2020). Another advantage is their
ability to withstand various external factors such as
temperature or thickness gradients while maintaining
their structural integrity (Gong et al., 1999).

Due to their graded properties in several
dimensions, many researchers have focused
greater attention on FGMs, utilizing a variety of
techniques and mathematical approaches. Among
those, the finite element method has become the
most widely used for their structural analysis. Wang
and Pan (2011) used the three-dimensional finite
element method to investigate the behavior of FGM
multiferroic composites under different types of loads.
Hedayatrasa et al. (2014) used the time-domain
spectral finite element method based on Chebyshev
Lagrangian expansion to numerically describe the
characteristics of elastic wave propagation in 2D
FGMs. Using an analytical method, Gong et al. (1999)
investigated the effects of the constituent volume
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fraction on various structures of FG shells. Other
researchers applied the same method to investigate
elastic waves in an FG cylinder (Han et al., 2002) and
an FG piezoelectric cylinder (Han and Liu, 2003).
Furthermore, higher-level modeling techniques
such as the Legendre polynomial series approach
were developed to improve its accuracy. Some
researchers also studied guided wave dispersion
curves and displacement distributions in FGM plates
(Lefebvre et al., 2001) and radially graded cylinders
(Elmaimouni et al., 2005). This approach was further
developed to explain the behavior of guided waves
in more complex structures, including thermoelastic
(Yu et al., 2010) and viscoelastic FGM plates (Yu et
al., 2012) as well as functionally graded piezoelectric-
piezomagnetic plates (Zhang et al., 2018). Liu et al.
(2021) relied on the modified couple stress theory to
examine the Lamb wave propagation properties in
a small-scale functionally graded piezoelectric plate.
Several other methods were utilized to analytically
solve the wave equations in FGMs (Ashida et al.,
2022; Bezzie & Woldemichael, 2021; Bian et al.,
2022; Radman et al., 2023; Velhinho & Rocha, 2011;
Wang et al., 2022).

The study of elastic wave propagation and

dispersion is essential in the most diverse
applications and domains like earthquake
engineering, architecture and non-destructive

testing (Yilmaz et al., 2020). The use of ultrasonic
guided waves represents a rapid, effective, and
delicate non-destructive testing method commonly
employed for various engineering materials. Zhang
et al. (2022b) explored the influence of polarization
variation on phonon modes and phason modes in
the quasi-periodic direction. Based on the Legendre
polynomial method, Li et al. (2022) studied the
propagation of longitudinal axisymmetric guided
waves in a full-length bonding resin bolt, which is a
bilayer structure. Zhang et al. (2022a) analyzed the
propagation of generalized thermo-elastic waves
in bars with a rectangular cross-section. Naciri et
al. (2019) investigated the numerical vibrational
characterization of an annular piezoelectric disc
resonator partially covered with electrodes to
express the mechanical displacement components
as well as the electric potential.

In this perspective, the current research intends to
provide an analytical framework to investigate wave
propagation properties in a composite functionally
graded (FG) structure made of stainless steel (SS)
and silicon nitride (SN). In particular, it aims to
numerically analyze wave propagation in a three-
layered (SS/SN/SS) FGM cylinder. For this purpose,
the volume fraction distribution is used to confirm
that Young’s modulus, Poisson’s ratio, and the
density of FGM cylinders vary gradually in the radial
direction. Mathematical equations are converted
into a complex eigenvalue and eigenvector problem,

enabling the calculation of dispersion curves for
normalized frequencies and phase velocity. The
numerical results enable the evaluation of dispersion
curves for longitudinal, torsional, and flexural
modes. We also studied displacement distributions
and stress field profiles to reveal and extend our
understanding of the characteristics of guided waves
in FG materials. The results of our comprehensive
model are in line with the theoretical numerical
results found in literature.

Methods

In this paper, the Legendre orthogonal polynomial
method is proposed to model guided wave
propagation in a multi-layered functionally graded
hollow cylinder. In fact, the propagation of guided
waves and their physical properties still remain an
essential tool in several application domains, such
as: non-destructive testing and evaluation (NDT&E)
(Yilmaz et al., 2020) and structural health monitoring
(SHM) (Wang et al., 2020). In this case, the acoustic
waves are reflected when they encounter changes
in the characteristic properties or geometry of
materials, caused by specific phenomena, e.g.,
corrosion, discontinuities, welds, etc., thus making it
possible to localize defects and providing information
about their nature. This simplifies testing over long
distances and prevents the need to scan the entire
structure. Thanks to this method, it is possible to
inspect even hard-to-reach areas without having
to remove the insulation material in certain cases
(Huang et al., 2020). This study represents a crucial
step for non-destructive evaluation (NDE) of material
properties and, therefore, for better understanding
of its potential applications in manufacturing and
quality control. The scope of this research could
be expanded to encompass numerous other
applications, including aeronautics, biomechanics,
biomedicine, and automotive. Besides, FGMs are
suitable for aerospace applications due to their
ability to withstand extremely high thermal gradients.
FGMs were first created for the aerospace sector.
Their use has since expanded to cover components
of rocket engines, heat exchangers, turbine wheels,
turbine blades, space shuttles, and other machines
(Ghatage et al., 2020).

Basic equation

In this section, a hollow FGM cylinder with infinite
length is used to describe the problem as a part of
the three-dimensional linear elasticity theory with
various material parameters (Poisson’s ratio v,
density p, and Young’s modulus E) varying in the
radial direction, where a and b are the inner and
outer radius, respectively. Let us also introduce such
values as H, which is the thickness, and R, which
is the average surface radius of the cylinder, with
H=b-a and R=(a+b)/2as shown in Fig. 1.

The problem will be solved in a cylindrical
coordinate system (r, ¢, z), where r, ¢, and z are
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Fig. 1. FGM cylindrical structure with the (SS/SN/SS)
configuration

the radial, circumferential, and axial directions,
respectively. As the first assumption, the propagation
of the acoustic waves is considered throughout the
z-axis.

The usual approach is to start from an
infinitesimal element in an infinite elastic isotropic
solid with density p. In this case, a change of variable
is proposed to solve the wave equations for circular
cylinders:

@ =kr, gy =0, q3=kz,
where k is the wave number.
The following equations can be used to represent

the law of variation of stiffness CiS.M) and density p(M)
as a polynomial with degree L:
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where:

Cig-M)(ql), i, j=1,2,..6 are the ordinary elastic
constants of the space constituting the cylinder at
the point M(ql)'

p(M) ql) is the density of the structure at the
point M q&).

In F hollow cylinders, the radial variation
of material properties is considered progressive
(Elmaimouni, 2005). As a result, material
characteristics may be described in terms of q;.

Using the Einstein summation convention, Eq. 1.b
can be expressed as follows:

=21

y
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where:

Cl(jl) and p(l) are the coefficients of a polynomial
with degree /.

In a cylindrical coordinate system, the
relationship between the deformation tensors and
the displacement components for an elastic medium
was described by Zhang et al. (2022a):
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where u;, u, and uy are the components of mechanical
displacement in the radial, circumferential, and axial
directions, respectively.

According to the three-dimensional theory of
elasticity, Hooke’s law describes the properties of
both homogeneous and inhomogeneous materials.
For each layer, the stress-strain expressions can be
represented as follows (Elmaimouni, 2005):
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where T;; denote the components of the stress tensor
and Cj;; denote the elastic coefficients.

By neglecting the body force, we can write the
three-dimensional stress motion equations and
displacement components of a linear elastic material
in cylindrical coordinates as follows (Li et al., 2022):

_ 2
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Boundary conditions
The electrical and mechanical boundary

conditions are embedded directly into the equations
of motion, using position-dependent physical
quantities C;; (¢;) and rectangular window functions
n(ka,kb) (Elmaimouni et al., 2005; Lefebvre et al.,
2001; Naciri et al., 2019), defined according to
the studied geometrical structure, in order to take
into consideration the entire surface of the studied
structure without the need of meshing. Thus, the
cylindrical structure can be defined as follows:

kaéqlﬁkb, Oﬁqz SZTC, —OOSq:; < 40

When the boundary condition of the material is
taken into account, the position-dependent elastic
constants and density can be obtained by the
following expressions:

!
M N[ q
clg. )(ql):cg.){k—é] n(ka, kb)
, (6)
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where:
n(ka,kb) is the rectangular window function
defined as follows:

n(ka, kb) = {

According to Eqgs. 6 and 7, the density and the
elastic modulus in the outer cylinder are equal to
zero. As a result, the vacuum outside the cylinder is
regarded as a medium with zero impedance, which
ensures that the stresses outside the cylinder are
equal to zero.

Mechanical displacements

Since in this research guided waves are assumed
to propagate in the z-direction, the components of
the mechanical displacement in an orthonormal
basis can be represented as follows:
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where n = 0, 1, 2, ... — the circumferential wave
number, o — the pulsation, p(a=1,2et3) — the
amplitudes of the polynomial Q,,, a =1 pertains to the
radial direction, o =2 pertains to the circumferential

u3 (91,92, 93:1) =

direction, and a =3 pertains to the axial direction.
The polynomials 0, (4;) can be written as follows:
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where:

P, is the Legendre polynomial with degree m,

0, (q1) is the complete orthonormal set in
the range ka<gq <kb, which can represent any
continuous function. Each of these three components
of mechanical displacements is represented by a set
of three functions. The functions associated with
the circumferential and axial terms are expressed
by exponential functions while the radial term is
represented by Legendre polynomials (Yilmaz et al.,
2020).

The stress tensors in Eq. 4 and the mechanical
displacement in Eq. 8 can be embedded into the
motion equations given in Eq. 5, and the derivatives
of the rectangular window function n(ka, kb) produce
terms 8(g; =ka) and 8(g; = kb). Such formulation
gives us the equation system shown below:
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Each element of Eq. 9 (a—c) was multiplied by
L —ingy, with j ing fi infini
— 0. e , Jvarying from 0 to infinity. The
o Q; (1)

obtained equations were integrated over j from 0 to
infinity, over ¢, from kR, to kR ,, and over ¢, from 0
to 2n. Thus, we can deduce the following system of
equations:

Amjl lAmJZ Amj3

21, ,m 1
11 Pt 4 Pyt A3 Py =T M

P

m,j 1 1 mj 2 m,j 3 21, m

A21 P * A22 P * A23 Py =N M pm’(10)
| m,J m, j 210, m 3
A+ 435 o+ 455 =

These characteristic equations may be expressed
as the product of two matrices with the following
eigenvalues and eigenvectors:

IR I (el 2«
[(M) A} w=’ ol (1)
of
The guided velocity is as  follows:
N~ =pVou, Vo =0/ k.

pm (a =1,2 and 3) is the eigenvector enabling the

calculation of the displacement components and all
other associated field parameters.
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IAZ%J (o,p=1,2,3), ZM;?’ are the equations
required to calculate all the matrix elements (more
details are given in the Appendix below).

Allthe equations required to calculate the pertinent
matrix elements are provided in the Appendix below.
A three-layered FGM cylinder is examined using the
suggested approach following the above derivation
steps. In this regard, MATLAB software is used to
numerically solve the matrix of eigenvalues and
eigenvectors in Eq. 11. Finally, we point out that when
the wave number k and the graded index change,
the eigenvalue problem is resolved using MATLAB
eig function. Eigenvectors can be used to define
the wave profile, and eigenvalues — to calculate
the phase velocity. As a result, it is clear that the
suggested approach represents an efficient way to
simultaneously acquire the displacement, stress
distribution and dispersion curves of an FGM cylinder.

Results and discussion

Configurations of cylindrical FGM structures

In order to verify the accuracy and effectiveness of
our polynomial approach, we examined the acoustic
waves in a three-layered hollow inhomogeneous
cylinder made of two different materials, as
discussed by Gong et al. (1999) and Han et al.
(2002) and shown in Figure 1. In our investigation,
silicon nitride and stainless steel were used. FG
cylinders have silicon nitride (SN) at the central
surface and stainless steel (SS) on the exterior and
interior. Table lists the elastic properties of stainless
steel and silicon nitride required to solve the FGM
frequency equation.

A computer program was developed to calculate
the dispersion behavior using the preceding
equation. In this case, the Voigt-type model is
applied to determine the effective FGM property of
two mixed materials at the i" layer level. It can be
written as follows:

D=7+ AN @12k, (12)
where .f(i) is the effective material proportion of FGM
and the volume fraction, V(i)( ) is the ji" material
volume fraction with V( )(q1)+ (g(ql) =1

In case of FGM structures, the displacement
and stress components should be continuous at the
interfaces between the layers due to the advantages
of the monotonic change in the volume fraction of
the phase components, which allows the elimination
of stress discontinuities. These considerations are
adopted to align with those utilized by Gong et al.
(1999) for validation, with position to thickness ratio
:_;] in the range from -1 to 1. Additionally, the shape of

the local volume fraction is shown as a power series
S using the following equation in the radial direction:
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This research examines a three-layered FGM
cylinder. Here, Vn(jl) is the volume fraction of silicon
nitride, and Vrff)z is the volume fraction of stainless steel

in the (SS/SN/SS) cylinder arrangement. It is assumed
that the values of the gradient index S vary from 0.1 to
25 for the functionally graded material along the radial
direction. The variation tendency of volume fraction
distribution along the radial direction significantly
changed due to gradient exponents, as observed in
Fig. 2. The amount of silicon nitride in the inner layer of
the FGM cylinder equals 0, increasing continuously to
1 at the middle surface [kq—;] = 0) as the gradient index
S rises before continually decreasing to 0 in the outer
layer. As for the stainless steel volume fraction, it roughly
decreases from 1 in the inner layer to 0 at the middle
surface as the gradient exponent grows, and then
exponentially increases to 1 at the outer surface. This

proves that in the inner layer [q—l = —1j and the outer
layer (i :1), the surface is uniformly dominated by

stainless steel, whereas at the middle surface (:—11{ = OJ

, the silicon nitride volume fraction is dominant.
Based on Egs. 12 and 13, we have calculated the
spatial distributions of the mechanical characteristics

a) 1
o9} 1
s=0.1
08} 1
0.7 ¢ 0.3 1
06| 05 E
£ 05
=
04 1
0.3 1.
0.2 2
0.1 5
19 bs
0708 06 04 02 0 02 04 05 08 1
q1IkH

of the FGM cylinder along the thickness direction.
Figs. 3(a-c) show the variations of FGM Young’s
modulus, Poisson’s ratio, and density for the (SS/
SN/SS) configuration with the variation of the power-
law exponent (S) across the radial direction when
S =041, 0.3, 0.5 1, 2, and 4. Furthermore, it is

possible to calculate the stiffness coefficient CiS'l) of
order / of the examined FGM based on Poisson’s

ratio v(q;), density p(l), and Young’s modulus E(q)
of the silicon nitride and stainless steel volume
fractions previously determined using Eq. 12. As

/ /
for the numerical results, the coefficients Cl(l)’ Cl(z)

and C(Z) of the studied FGM are shown in Fig. 4.
It can be observed that Poisson’s ratio, density,
Young’s modulus, and position-dependent elastic

constants CIU) of the functionally graded material
vary contindously along the radial direction. This
research also demonstrates a significant influence of
the graded index on changes in material properties
in the radial direction ¢; when kH = ka.

Dispersion curves

The resolution of the system of equations (10)
results in the dispersion curves of the propagation
modes in the structure, relating the frequencies
(f) to the wave numbers (k). In this context, a
computer program was developed to plot the
dispersion curves of cylindrical structures. We
decided to express the phase velocities as a
function of frequency-thickness. Moreover, the

Stainless steel and silicon nitride material

properties
Properties
E (GPa) v p (kg/m3)
Silicon nitride 322.4 0.24 2370
Stainless steel 207.82 0.317 8166

Fig. 2. Variation of the volume fraction in the cylindrical layer of FGM in the radial direction with different graded index S values:
(a) volume fraction of silicon nitride (b) volume fraction of stainless steel
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numerical results are used to demonstrate how
the graded index affects the convergence of
dispersion curves. It provides a theoretical support
for the quantitative measurement of the structural
properties of the FGM cylinder by utilizing the
relationship between the gradient distribution and
propagation characteristics. Figs. 5 and 6 show the
dispersion curves for the (SS/SN/SS) configuration
of the FGM cylinder for axisymmetric (longitudinal
L(0, m), torsional T(0, m)) and symmetric (F(1,
m)) modes, respectively. It can be noticed that for
all propagation modes for the functionally graded
cylinder in the (SS/SN/SS) configuration, only the

Mass density

Poisson's ratic

q,/kH

Fig. 3. Spectral variation of: (a) Poisson’s ratio, (b) density,
(c) Young’s modulus

88

first modes L(0,1), T(0,1) and F(0,1) did not show
any cut-off frequencies.

In this section, the relationship between the
guided wave phase velocity and gradient distribution
is examined. Figs. 7 and 8 present the phase velocity
curves of the axisymmetric (n = 0) and symmetric
(n = 1) modes of the configuration (SS/SN/SS) as a
function of the frequency (f)-thickness (H) product,
where HIR = 1.

In this study, only three mode values are taken
into account: 0.1, 1, and 4. Figs. 7 and 8 show that all
modes are dispersive. Besides, it was found that only
the first modes (the lowest modes) did not have any cut-

a) 3

37

A1 448 06 24 02 1] 0.2 0.4 0.6 0.8 1
q,/kH

9 2
C,,x10? Nim?)

-1 08 06 D4 D2 0 0.2 0.4 06 0.8 1
a,ikH

Fig. 4. Spectral variation of the stiffness coefficient Cl(j[): (a) cl(i),
/ /
®) ). @ clf
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Fig. 5. Normalized frequency Q = mH/(C44/p)l/2 as a function

of kH in the hollow cylinder for longitudinal and torsional modes
(n=0):(a)S=0.1,(b)S=1,(c) S=4

off frequency. Fundamental modes L(0,1), T(0,1), and
F(0,1) are the only modes that exist at extremely low
frequencies. At higher frequencies, all the fundamental
modes are transformed into Rayleigh surface waves
and propagate at the Rayleigh speed (V = 2940 m/s).

It is clear that there is a relationship between
the values of the graded index and phase

)1/2

Fig. 6. Normalized frequency Q = wH/(Cy4/p) "~ as a function
of kH in the FGM hollow cylinder for symmetric modes (n = 1):
(a)S=0.1,(b)S=1,(c)S=4

velocity curves for L(0, 1) and T(0, 1) modes of
the three-layered FGM cylinder. Furthermore,
in both figures, the effects of the graded index
on the cut-off frequencies differ in propagation
modes that are symmetric and axisymmetric. The
graded index has a considerable effect on the
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Fig. 7. Phase velocity dispersion curves as a function
of the frequency-thickness product in the hollow FGM cylinder
for longitudinal and torsional modes: (a) S = 0.1, (b) S =1,
(c)S=4

phase velocity curves in longitudinal and torsional
modes. Fig. 7a shows that the phase velocity of
L(0,1) and T(0,1) modes is substantially higher
than that in Figs. 7b and 7c¢ for hollow FGM
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Fig. 8. Phase velocity dispersion curves as a function
of the frequency-thickness product in the hollow FGM cylinder
for flexural modes: (a) S=0.1,(b)S=1,(c)S=4

cylinders. These results demonstrate that the
phase velocities of the same mode decrease as
the exponents of the power law increase. This can
be explained by the fact that small values of s
correlate to the large volume fractions of stainless
steel (Figure 2a V,,), while the large values of s
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correlate to the small volume fractions of silicon
nitride (Figure 2b V).

Mechanical displacements
distributions

In this section, the conundrum lays in determining
the profiles of the mechanical displacements
and normal stresses corresponding to different
normalized frequencies, through the thickness
of the cylinder. Therefore, we examined the normal
stresses and mechanical displacement profiles for the
axisymmetric (n = 0) and non-axisymmetric modes
(n = 1) in the hollow inhomogeneous functionally
graded cylinder. Figs. 9 and 10 show the mechanical
displacement profiles for both axisymmetric (n = 0)
and non-axisymmetric (n = 1) modes, respectively.
In case of longitudinal modes, the circumferential
component v always remains zero along the cylinder
thickness, whereas the axial component dominates
in the mechanical displacements. However, the
axial and radial components are zero for torsional
modes. In case of flexural modes, as opposed to
compression and torsional modes, each component
of the mechanical displacement is coupled with each
and every other component.

Stress distributions and boundary conditions

Figs. 11 and 12 show the normal stress profiles
of the hollow FGM cylinder for longitudinal modes

and stress

a) 0-16.0761; KH=4

(n = 0) and flexural modes (n = 1), respectively. As
can be observed, in case of axisymmetric modes,
the circumferential stresses 7., are zero, while in
case of flexural modes they are very low. In case
of axisymmetric and flexural modes, it is evident
that all normal stresses are zero on the inner and
outer surfaces of the cylinder. This demonstrates
the effectiveness of the mathematical approach
employed to establish the boundary conditions.
Although the elastic constants of two adjoining
layers differ, it is widely known that at the interfaces,
the normal stresses and displacements vary
continuously from one surface to the next due to the
advantages of monotonic fluctuation in the volume
fraction of the component phases. All higher order
modes propagate inside the cylinder, and the motion
of the particles becomes more complicated. The
latter is what explains why all the constraints are
zero at the edges of the cylinder.

Method validation

In the course of the study, we investigated the
dispersion curves of the guided waves propagating
through the hollow inhomogeneous FGM cylinder of
the (SS/SN/SS) configuration with various gradient
shapes. For this purpose, a computer program
using the Legendre polynomial approach based
on the previous formulations was implemented

Q=19.8417;, KH=4
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in MATLAB software. The dispersion curves of
normalized frequencies and phase velocity for
three layers of FGM with a cylindrical shape are
completely undetermined. As shown in Fig. 13, to
compare our results with the available data (Gong
et. al., 1999; Hedayatrasa et al., 2014), we calculate
the normalized frequencies of the hollow FGM
cylinder with two layers made of stainless steel and
silicon nitride. Simulations are made considering
the axisymmetric mode (n = 0) with three different
gradient index S values for a specific limit when
kR = 20kH with truncation M = 25. The comparison
of our results with those reported in literature by Han
et al. (2002) demonstrates that our methods has a
high degree of precision and reliability in addition to
the theoretical and programming equation accuracy.

It is clearly observed that the results of the
numerical analytical method (reported by Han et al.
(2002)) are compatible with the results obtained with
the use of our method. This approach can predict
the behavior of an infinite-length FGM cylinder
with quite a high accuracy. The comparison of our
findings with those found in literature demonstrates
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that our method has a high degree of accuracy and
reliability.

Conclusion

The goal of the study was to develop a
numerical approach to solve and compute the wave
propagation problem in a continuous three-layered
FGM cylinder, without discretizing the gradient
structure. The polynomial approach considerably
reduced the challenges experienced in this context
and offered access to more rapid and precise
numerical results. The propagation characteristics
of the guided waves in three-layered FGM cylinders
were determined. The obtained results showed that
the variations of the material properties in the radial
direction are significantly influenced by the graded
index. The dispersion curves of the normalized
frequencies and phase velocities are considerably
impacted by the graded index due to the continuous
variation of the volume fraction. The influence of
the boundary conditions on the normal stresses
across the radial direction of FG material was
examined. Based on the simulations, it was found
that the field profiles are strongly influenced by the
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electrical and mechanical boundary conditions. The the current approach is extremely accurate when
comparisons with the results published in literature compared to other available reference data. All
showed that the Legendre polynomial approach can acoustic eigenmodes, regardless of their kind, can
model the propagation of acoustic waves in a three- be precisely identified due to the fast convergence
dimensional FGM cylinder. The results reveal that of the presented method.
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Appendix

The elements required to calculate the eigenvalues and eigenvectors:
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AHHOTauus

BeepeHue: CTponTenbHas oTpacrb UCNbITbIBAET BCe bonbluee AaBrneHne B CBA3M C TeM, YTO TpebyeTcsi MakCMMU3npoBaTh
JKCMIyaTauMoHHbIE XapaKTepUCTUKM MpU  OOHOBPEMEHHOM CHWDKEHUW 3aTpaT W YMEeHblUeHWW BO3AEWCTBUS Ha
OoKpy>KatoLLyto cpeay. [Inga pelleHus aTov NpobnemMbl NpeanaraeTcs HOBbIM TUM MaTepuasnoB, @ MUMEHHO (PYHKLUMOHArNbHO-
rpaguneHTHele matepuansl (OPrM). MNpermMyLLecTBO 3TUX MaTepuarnoB B TOM, YTO OHM CMOCOOHbI BbIAEPXKUBATL XECTKME
yCInoBus aKcnnyatauumn 6e3 notepu cBomx cBocTB. Llenb nccnegoBanus: AaHHasa paboTa HanpaenieHa Ha JanbHenwee
paclupeHve NpeacTaBreHnin O TUNax pacnpocTpaHEHUs N XxapakTepruCTUKax HamnpaBneHHbIX BOIH B uunuHapax n3d ®rm
¢ BeckoHe4HoW AnMHON. B xoge nccnegoBaHus Mbl MPOaHanM3npoBany LUMMMHAPUYECKY0 060MOYKy, COCTOSLLYIO U3 TPex
KONbLEBbIX CIOEB, KaXAbli N3 KOTOPbIX pa3derneH rpagveHTHbIM CNoeM Mo TOrWwMHe CTeHku. B ctatbe npepnaraetca
WHCTPYMEHT MOAENMPOBaHWS, OCHOBaHHbIN HAa METo4Ee OPTOroHarnbHbIX NONMMHOMOB JlexaHapa. MeToabl: NpUMeHsSEMbI
METOA NPUBOAUT K Npobrieme cobCTBEHHbIX 3HAYeHUN /| COBCTBEHHbBIX BEKTOPOB. PaHNYHbIE YCIOBUSA MHTEIPUPYIOTCH B
onpegensoLye ypaBHeHNs pacnpocTpaHeHWs HanpaBneHHbIX BOMH. PaccunTtaHbl kpyBble aucnepcumn hasoBo CKOPOCTU U
HOPMUPOBaHHON YacToTbl. Kpome TOoro, paccymTbiBalOTCA M paccMaTpyBaloTCs pacrnpegeneHns nepeMeLleHni n npodunm
nons HanpshkeHnn Ans PyHKLMOHANbHO-rPagnueHTHOro LMNNHAPA C pas3nuyHbIMY rpaaMeHTHbIMM nokasaTensiMu B 060oumx
TMnax (OCeCUMMETPUYHOM UM CUMMETPUYHOM). Pe3dynbraTbl 4EMOHCTPUPYIOT MOCTOSHHbIE KonebaHus B ahdeKTVBHOM
®I'M. Pesynbratbl: 6bin0 0OHapyxeHO, YTO KpvBble (Pa30BOW CKOPOCTM OLHOMO M TOrO Xe TuMna pacrnpocTpaHeHUs
YMEHBLLAKTCS C yBEMMYEHNEM IKCMOHEHTbI CTEMEHHOTO 3akoHa. Kpome Toro, rpaHuyHbIe yCroBusi oKasbiBaloT GonbLuee
BMUSHWE Ha HOpMarbHbIe HanpsPKkeHWs. TOYHOCTb M 3PEKTVBHOCTb YCOBEPLLUEHCTBOBAHHOIO METOAA OPTOrOHarbHbIX
NMONMMHOMOB AEMOHCTPUPYETCA Ha MpYMepe CpPaBHEHWS TOYHOTO PeLUeHUs, MOMYYEHHOro YMCIEHHO-aHaNUTUYECKNM
CNocoboMm, ¥ HaLIMX YNCTIEHHBIX PEe3ynbTaToB.

KnioyeBble cnoBa: HanpaBrneHHble, MeToq NOnMMHOMOB Jlexanapa, yHKUMOHaNbHO-rpagneHTHele matepuansl (M),
KpUBbIE AUCNEPCUN.
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