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Abstract
Introduction: The building industry is under increasing pressure to maximize performance while reducing the costs and 
the environmental impact. To solve this problem, a new type of materials, i.e., functionally graded materials (FGMs), are 
proposed. These materials have the advantage of being able to withstand harsh environments without losing their properties. 
Purpose of the study: The paper aims to further extend the understanding of the propagation modes and characteristics 
of guided waves in FGM cylinders with infinite lengths. In the course of the study, we analyzed a cylindrical shell composed 
of three annular layers, each separated by a gradient layer across the wall thickness. A modeling tool based on the 
Legendre orthogonal polynomial method is proposed in the paper. Methods: The method applied results in an eigenvalue/
eigenvector problem. The boundary conditions are integrated into the constitutive equations of guided wave propagation. 
The phase velocity and normalized frequency dispersion curves are calculated. Besides, the displacement distributions 
and stress field profiles for a functionally graded cylinder with various graded indices in both modes (axisymmetric and 
symmetric) are calculated and discussed. The results show a constant fluctuation of effective FGM material. Results: 
It was found that the phase velocity curves of the same mode decrease as the exponents of the power law increase. In 
addition, the boundary conditions have a greater impact on the normal stresses. The accuracy and effectiveness of the 
improved orthogonal polynomial method are demonstrated through a comparison of the exact solution obtained by an 
analytical-numerical method and our numerical results.

Keywords: guided waves, Legendre polynomial method, functionally graded materials (FGMs), dispersion curves.

Introduction
Material structures are becoming more complex 

and delicate due to recent scientific advancements 
in materials. Functionally graded materials (FGMs) 
have emerged as a result of exciting developments 
in engineering and material processing. FGMs 
are created in order to achieve higher levels of 
performance. In fact, FGMs are a class of composite 
materials with graded structure and characteristics 
changing spatially in the thickness direction. These 
materials have a graded interface rather than a sharp 
interface between two dissimilar materials. The 
purpose of choosing graded materials, particularly 
at the interface between layers, is to reduce inter-
laminar stress discontinuities. These can occur 
around the edges of laminates due to material 
incompatibility across the interface. The interface 
between two layers in FGM is typically seen as having 
seamless bonding, with properties that progressively 
change based on their thickness. The properties 
of FGM change continuously from one surface to 
another due to the effective monotonic variation in 
the volume fraction of the constituent phases. That 
enables the elimination of stress discontinuity in most 

searches, including layered structures made of two 
materials. The primary advantage of these materials 
is their ability to adjust specific thermomechanical 
properties through a continuous spatial distribution, 
resulting in increased resistance to interfacial failure 
(Yang and Liu, 2020). Another advantage is their 
ability to withstand various external factors such as 
temperature or thickness gradients while maintaining 
their structural integrity (Gong et al., 1999).

Due to their graded properties in several 
dimensions, many researchers have focused 
greater attention on FGMs, utilizing a variety of 
techniques and mathematical approaches. Among 
those, the finite element method has become the 
most widely used for their structural analysis. Wang 
and Pan (2011) used the three-dimensional finite 
element method to investigate the behavior of FGM 
multiferroic composites under different types of loads. 
Hedayatrasa et al. (2014) used the time-domain 
spectral finite element method based on Chebyshev 
Lagrangian expansion to numerically describe the 
characteristics of elastic wave propagation in 2D 
FGMs. Using an analytical method, Gong et al. (1999) 
investigated the effects of the constituent volume 
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fraction on various structures of FG shells. Other 
researchers applied the same method to investigate 
elastic waves in an FG cylinder (Han et al., 2002) and 
an FG piezoelectric cylinder (Han and Liu, 2003). 
Furthermore, higher-level modeling techniques 
such as the Legendre polynomial series approach 
were developed to improve its accuracy. Some 
researchers also studied guided wave dispersion 
curves and displacement distributions in FGM plates 
(Lefebvre et al., 2001) and radially graded cylinders 
(Elmaimouni et al., 2005). This approach was further 
developed to explain the behavior of guided waves 
in more complex structures, including thermoelastic 
(Yu et al., 2010) and viscoelastic FGM plates (Yu et 
al., 2012) as well as functionally graded piezoelectric-
piezomagnetic plates (Zhang et al., 2018). Liu et al. 
(2021) relied on the modified couple stress theory to 
examine the Lamb wave propagation properties in 
a small-scale functionally graded piezoelectric plate. 
Several other methods were utilized to analytically 
solve the wave equations in FGMs (Ashida et al., 
2022; Bezzie & Woldemichael, 2021; Bian et al., 
2022; Radman et al., 2023; Velhinho & Rocha, 2011; 
Wang et al., 2022).

The study of elastic wave propagation and 
dispersion is essential in the most diverse 
applications and domains like earthquake 
engineering, architecture and non-destructive 
testing (Yilmaz et al., 2020). The use of ultrasonic 
guided waves represents a rapid, effective, and 
delicate non-destructive testing method commonly 
employed for various engineering materials. Zhang 
et al. (2022b) explored the influence of polarization 
variation on phonon modes and phason modes in 
the quasi-periodic direction. Based on the Legendre 
polynomial method, Li et al. (2022) studied the 
propagation of longitudinal axisymmetric guided 
waves in a full-length bonding resin bolt, which is a 
bilayer structure. Zhang et al. (2022a) analyzed the 
propagation of generalized thermo-elastic waves 
in bars with a rectangular cross-section. Naciri et 
al. (2019) investigated the numerical vibrational 
characterization of an annular piezoelectric disc 
resonator partially covered with electrodes to 
express the mechanical displacement components 
as well as the electric potential.

In this perspective, the current research intends to 
provide an analytical framework to investigate wave 
propagation properties in a composite functionally 
graded (FG) structure made of stainless steel (SS) 
and silicon nitride (SN). In particular, it aims to 
numerically analyze wave propagation in a three-
layered (SS/SN/SS) FGM cylinder. For this purpose, 
the volume fraction distribution is used to confirm 
that Young’s modulus, Poisson’s ratio, and the 
density of FGM cylinders vary gradually in the radial 
direction. Mathematical equations are converted 
into a complex eigenvalue and eigenvector problem, 

enabling the calculation of dispersion curves for 
normalized frequencies and phase velocity. The 
numerical results enable the evaluation of dispersion 
curves for longitudinal, torsional, and flexural 
modes. We also studied displacement distributions 
and stress field profiles to reveal and extend our 
understanding of the characteristics of guided waves 
in FG materials. The results of our comprehensive 
model are in line with the theoretical numerical 
results found in literature.

Methods 
In this paper, the Legendre orthogonal polynomial 

method is proposed to model guided wave 
propagation in a multi-layered functionally graded 
hollow cylinder. In fact, the propagation of guided 
waves and their physical properties still remain an 
essential tool in several application domains, such 
as: non-destructive testing and evaluation (NDT&E) 
(Yilmaz et al., 2020) and structural health monitoring 
(SHM) (Wang et al., 2020). In this case, the acoustic 
waves are reflected when they encounter changes 
in the characteristic properties or geometry of 
materials, caused by specific phenomena, e.g., 
corrosion, discontinuities, welds, etc., thus making it 
possible to localize defects and providing information 
about their nature. This simplifies testing over long 
distances and prevents the need to scan the entire 
structure. Thanks to this method, it is possible to 
inspect even hard-to-reach areas without having 
to remove the insulation material in certain cases 
(Huang et al., 2020). This study represents a crucial 
step for non-destructive evaluation (NDE) of material 
properties and, therefore, for better understanding 
of its potential applications in manufacturing and 
quality control. The scope of this research could 
be expanded to encompass numerous other 
applications, including aeronautics, biomechanics, 
biomedicine, and automotive. Besides, FGMs are 
suitable for aerospace applications due to their 
ability to withstand extremely high thermal gradients. 
FGMs were first created for the aerospace sector. 
Their use has since expanded to cover components 
of rocket engines, heat exchangers, turbine wheels, 
turbine blades, space shuttles, and other machines 
(Ghatage et al., 2020).

Basic equation
In this section, a hollow FGM cylinder with infinite 

length is used to describe the problem as a part of 
the three-dimensional linear elasticity theory with 
various material parameters (Poisson’s ratio v,
density ρ, and Young’s modulus E) varying in the 
radial direction, where a and b are the inner and 
outer radius, respectively. Let us also introduce such 
values as H, which is the thickness, and R, which 
is the average surface radius of the cylinder, with 
H b a R a b� � � �� �and / 2 as shown in Fig. 1. 

The problem will be solved in a cylindrical 
coordinate system (r, ϕ, z), where r, ϕ, and z are 



84

Architecture and Engineering	                             Volume 8 Issue 4  (2023) 

the radial, circumferential, and axial directions, 
respectively. As the first assumption, the propagation 
of the acoustic waves is considered throughout the 
z-axis. 

The usual approach is to start from an 
infinitesimal element in an infinite elastic isotropic 
solid with density ρ. In this case, a change of variable 
is proposed to solve the wave equations for circular 
cylinders:

q k r q q k z1 2 3� � �, ,  � ,
where k is the wave number.

The following equations can be used to represent 
the law of variation of stiffness Cij
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where:
Cij
M q( )

1� �, i j, , ,...=1 2 6 are the ordinary elastic 
constants of the space constituting the cylinder at 
the point M q1� �.

�( )M q1� � is the density of the structure at the 
point M q1� �.

In FGM hollow cylinders, the radial variation 
of material properties is considered progressive 
(Elmaimouni, 2005). As a result, material 
characteristics may be described in terms of q1. 
Using the Einstein summation convention, Eq.  1.b 
can be expressed as follows:
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where:

Cij
l� � and � l� � are the coefficients of a polynomial 

with degree l.
In a cylindrical coordinate system, the 

relationship between the deformation tensors and 
the displacement components for an elastic medium 
was described by Zhang et al. (2022a):
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(3)

where u u1 2,  and u3 are the components of mechanical 
displacement in the radial, circumferential, and axial 
directions, respectively.

According to the three-dimensional theory of 
elasticity, Hooke’s law describes the properties of 
both homogeneous and inhomogeneous materials. 
For each layer, the stress-strain expressions can be 
represented as follows (Elmaimouni, 2005):
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where Tij denote the components of the stress tensor 
and Cijkl denote the elastic coefficients.

By neglecting the body force, we can write the 
three-dimensional stress motion equations and 
displacement components of a linear elastic material 
in cylindrical coordinates as follows (Li et al., 2022):
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Fig. 1. FGM cylindrical structure with the (SS/SN/SS) 
configuration
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Boundary conditions
The electrical and mechanical boundary 

conditions are embedded directly into the equations 
of motion, using position-dependent physical 
quantities C qij 1� � and rectangular window functions 
π( , )ka kb  (Elmaimouni et al., 2005; Lefebvre et al., 
2001; Naciri et al., 2019), defined according to 
the studied geometrical structure, in order to take 
into consideration the entire surface of the studied 
structure without the need of meshing. Thus, the 
cylindrical structure can be defined as follows:

ka q kb q q� � � � �� � � ��1 2 30 2, ,  �

When the boundary condition of the material is 
taken into account, the position-dependent elastic 
constants and density can be obtained by the 
following expressions:
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where:
π( , )ka kb  is the rectangular window function 

defined as follows:
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According to Eqs. 6 and 7, the density and the 
elastic modulus in the outer cylinder are equal to 
zero. As a result, the vacuum outside the cylinder is 
regarded as a medium with zero impedance, which 
ensures that the stresses outside the cylinder are 
equal to zero.

Mechanical displacements
Since in this research guided waves are assumed 

to propagate in the z-direction, the components of 
the mechanical displacement in an orthonormal 
basis can be represented as follows:

u q q q t e e p Q qinq i t q
m

m
m1 1 2 3

1

0

1

1

2

2 3, , , ;� � � � ��� �
�

�

�
�

�

 
(8.a)

u q q q t e e p Q qinq i t q
m

m
m2 1 2 3

2

0

1

1

2

2 3, , , ;� � � � ��� �
�

�

�
�

�

 
(8.b)

u q q q t e e p Q qinq i t q
m

m
m3 1 2 3

3

0

1

1

2

2 3, , , .� � � � ��� �
�

�

�
�

�

 
(8.c)

where n  =  0, 1, 2, ...  — the circumferential wave 
number, ω — the pulsation, p etm

� � �� �1 2 3,  — the 
amplitudes of the polynomial Qm, � �1 pertains to the 
radial direction, � � 2 pertains to the circumferential 

direction, and � � 3 pertains to the axial direction. 
The polynomials Q qm 1� � can be written as follows:
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where:
Pm  is the Legendre polynomial with degree m,
Q qm 1� � is the complete orthonormal set in 

the range ka q kb≤ ≤1 , which can represent any 
continuous function. Each of these three components 
of mechanical displacements is represented by a set 
of three functions. The functions associated with 
the circumferential and axial terms are expressed 
by exponential functions while the radial term is 
represented by Legendre polynomials (Yilmaz et al., 
2020).

The stress tensors in Eq. 4 and the mechanical 
displacement in Eq.  8 can be embedded into the 
motion equations given in Eq. 5, and the derivatives 
of the rectangular window function π( , )ka kb  produce 
terms � q ka1 �� � and � q kb1 �� �. Such formulation 
gives us the equation system shown below:
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Each element of Eq.  9 (a–c) was multiplied by 
1

2
1

2

�
Q q ej

inq* � � � , with j varying from 0 to infinity. The 

obtained equations were integrated over j from 0 to 
infinity, over q1 from kR1 to kR 2, and over q2 from 0 
to 2π. Thus, we can deduce the following system of 
equations:
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These characteristic equations may be expressed 
as the product of two matrices with the following 
eigenvalues and eigenvectors:

	
l l
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,

       (11)

The guided velocity is as follows: 
� � �2 2� �V V kph ph, / . 

pm and� � �� �1 2 3,  is the eigenvector enabling the 
calculation of the displacement components and all 
other associated field parameters.

l Am j
�� � �,

, , , ,�� �1 2 3

 
lM j
m are the equations 

required to calculate all the matrix elements (more 
details are given in the Appendix below).

All the equations required to calculate the pertinent 
matrix elements are provided in the Appendix below. 
A three-layered FGM cylinder is examined using the 
suggested approach following the above derivation 
steps. In this regard, MATLAB software is used to 
numerically solve the matrix of eigenvalues and 
eigenvectors in Eq. 11. Finally, we point out that when 
the wave number k and the graded index change, 
the eigenvalue problem is resolved using MATLAB 
eig function. Eigenvectors can be used to define 
the wave profile, and eigenvalues  — to calculate 
the phase velocity. As a result, it is clear that the 
suggested approach represents an efficient way to 
simultaneously acquire the displacement, stress 
distribution and dispersion curves of an FGM cylinder.

Results and discussion
Configurations of cylindrical FGM structures
In order to verify the accuracy and effectiveness of 

our polynomial approach, we examined the acoustic 
waves in a three-layered hollow inhomogeneous 
cylinder made of two different materials, as 
discussed by Gong et al. (1999) and Han et al. 
(2002) and shown in Figure 1. In our investigation, 
silicon nitride and stainless steel were used. FG 
cylinders have silicon nitride (SN) at the central 
surface and stainless steel (SS) on the exterior and 
interior. Table lists the elastic properties of stainless 
steel and silicon nitride required to solve the FGM 
frequency equation.

A computer program was developed to calculate 
the dispersion behavior using the preceding 
equation. In this case, the Voigt-type model is 
applied to determine the effective FGM property of 
two mixed materials at the i th layer level. It can be 
written as follows:

f q f V q f V qi i
m
i i

m
i� � � � � � � � � �� �( ) ( ) ( )1 1 11 1 2 2

; i k=1 2, ...... , (12)

where f i� � is the effective material proportion of FGM 

and the volume fraction, V qm j
i� � � �1  is the j th material 

volume fraction with V q V qm
i

m
i

1 21 1 1
� � � �� �( ) ( ) .

In case of FGM structures, the displacement 
and stress components should be continuous at the 
interfaces between the layers due to the advantages 
of the monotonic change in the volume fraction of 
the phase components, which allows the elimination 
of stress discontinuities. These considerations are 
adopted to align with those utilized by Gong et al. 
(1999) for validation, with position to thickness ratio 
q
kH

1  in the range from -1 to 1. Additionally, the shape of 

the local volume fraction is shown as a power series 
S using the following equation in the radial direction:
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This research examines a three-layered FGM 
cylinder. Here, Vm

i
1
( ) is the volume fraction of silicon 

nitride, and Vm
i
2
( )  is the volume fraction of stainless steel 

in the (SS/SN/SS) cylinder arrangement. It is assumed 
that the values of the gradient index S vary from 0.1 to 
25 for the functionally graded material along the radial 
direction. The variation tendency of volume fraction 
distribution along the radial direction significantly 
changed due to gradient exponents, as observed in 
Fig. 2. The amount of silicon nitride in the inner layer of 
the FGM cylinder equals 0, increasing continuously to 

1 at the middle surface q
kH
1

0��

�
�

�

�
� as the gradient index 

S rises before continually decreasing to 0 in the outer 
layer. As for the stainless steel volume fraction, it roughly 
decreases from 1 in the inner layer to 0 at the middle 
surface as the gradient exponent grows, and then 
exponentially increases to 1 at the outer surface. This 

proves that in the inner layer q
kH

1 1� ��

�
�

�

�
� and the outer 

layer q
kH

1 1��

�
�

�

�
�, the surface is uniformly dominated by 

stainless steel, whereas at the middle surface q
kH
1

0��

�
�

�

�
�

, the silicon nitride volume fraction is dominant.
Based on Eqs. 12 and 13, we have calculated the 

spatial distributions of the mechanical characteristics 

Fig. 2. Variation of the volume fraction in the cylindrical layer of FGM in the radial direction with different graded index S values: 
(a) volume fraction of silicon nitride (b) volume fraction of stainless steel

of the FGM cylinder along the thickness direction. 
Figs.  3(a-c) show the variations of FGM Young’s 
modulus, Poisson’s ratio, and density for the (SS/
SN/SS) configuration with the variation of the power-
law exponent (S) across the radial direction when 
S  =  0.1, 0.3, 0.5, 1, 2, and 4. Furthermore, it is 

possible to calculate the stiffness coefficient Cij
l� � of 

order l  of the examined FGM based on Poisson’s 

ratio ν( )q1 , density � l� �, and Young’s modulus E q( )1  
of the silicon nitride and stainless steel volume 
fractions previously determined using Eq.  12. As 

for the numerical results, the coefficients C
l
C
l

11 12

� � � �
,  

and C l44
� � of the studied FGM are shown in Fig.  4. 

It can be observed that Poisson’s ratio, density, 
Young’s modulus, and position-dependent elastic 

constants Cij
l� � of the functionally graded material 

vary continuously along the radial direction. This 
research also demonstrates a significant influence of 
the graded index on changes in material properties 
in the radial direction q1 when kH ka= .

Dispersion curves 
The resolution of the system of equations (10) 

results in the dispersion curves of the propagation 
modes in the structure, relating the frequencies 
(f) to the wave numbers (k). In this context, a 
computer program was developed to plot the 
dispersion curves of cylindrical structures. We 
decided to express the phase velocities as a 
function of frequency-thickness. Moreover, the 

  

a) b)

Stainless steel and silicon nitride material 
properties

Properties
E (GPa) ν ρ (kg/m3)

Silicon nitride 322.4 0.24 2370
Stainless steel 207.82 0.317 8166
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numerical results are used to demonstrate how 
the graded index affects the convergence of 
dispersion curves. It provides a theoretical support 
for the quantitative measurement of the structural 
properties of the FGM cylinder by utilizing the 
relationship between the gradient distribution and 
propagation characteristics. Figs. 5 and 6 show the 
dispersion curves for the (SS/SN/SS) configuration 
of the FGM cylinder for axisymmetric (longitudinal 
L(0, m), torsional T(0, m)) and symmetric (F(1, 
m)) modes, respectively. It can be noticed that for 
all propagation modes for the functionally graded 
cylinder in the (SS/SN/SS) configuration, only the 

Fig. 3. Spectral variation of: (a) Poisson’s ratio, (b) density, 
(c) Young’s modulus

Fig. 4. Spectral variation of the stiffness coefficient Cij
l� �: (a) C l11

� � ,
(b) C l

12

� �, (c) C l44
� �

first modes L(0,1), T(0,1) and F(0,1) did not show 
any cut-off frequencies.

In this section, the relationship between the 
guided wave phase velocity and gradient distribution 
is examined. Figs. 7 and 8 present the phase velocity 
curves of the axisymmetric (n  =  0) and symmetric 
(n = 1) modes of the configuration (SS/SN/SS) as a 
function of the frequency (f)-thickness (H) product, 
where H/R = 1. 

In this study, only three mode values are taken 
into account: 0.1, 1, and 4. Figs. 7 and 8 show that all 
modes are dispersive. Besides, it was found that only 
the first modes (the lowest modes) did not have any cut-

a)

c)

b)

a)

c)

b)
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velocity curves for L(0, 1) and T(0, 1) modes of 
the three-layered FGM cylinder. Furthermore, 
in both figures, the effects of the graded index 
on the cut-off frequencies differ in propagation 
modes that are symmetric and axisymmetric. The 
graded index has a considerable effect on the 

Fig. 5. Normalized frequency � � � �� �H/ C /44
1 2/  as a function 

of kH in the hollow cylinder for longitudinal and torsional modes 
(n = 0): (a) S = 0.1, (b) S = 1, (c) S = 4

a)

c)

b)

Fig. 6. Normalized frequency � � � �� �H/ C /44
1 2/  as a function 

of kH in the FGM hollow cylinder for symmetric modes (n = 1): 
(a) S = 0.1, (b) S = 1, (c) S = 4

off frequency. Fundamental modes L(0,1), T(0,1), and 
F(0,1) are the only modes that exist at extremely low 
frequencies. At higher frequencies, all the fundamental 
modes are transformed into Rayleigh surface waves 
and propagate at the Rayleigh speed VR �� �2940 m/s .

It is clear that there is a relationship between 
the values of the graded index and phase 
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Fig. 7. Phase velocity dispersion curves as a function 
of the frequency-thickness product in the hollow FGM cylinder 

for longitudinal and torsional modes: (a) S = 0.1, (b) S = 1, 
(c) S = 4

Fig. 8. Phase velocity dispersion curves as a function 
of the frequency-thickness product in the hollow FGM cylinder 

for flexural modes: (a) S = 0.1, (b) S = 1, (c) S = 4

 
�

a)

c)

b)

a)

c)

b)

phase velocity curves in longitudinal and torsional 
modes. Fig. 7a shows that the phase velocity of 
L(0,1) and T(0,1) modes is substantially higher 
than that in Figs. 7b and  7c for hollow FGM 

cylinders. These results demonstrate that the 
phase velocities of the same mode decrease as 
the exponents of the power law increase. This can 
be explained by the fact that small values of s 
correlate to the large volume fractions of stainless 
steel (Figure 2a Vm1), while the large values of s 
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correlate to the small volume fractions of silicon 
nitride (Figure 2b Vm2).

Mechanical displacements and stress 
distributions

In this section, the conundrum lays in determining 
the profiles of the mechanical displacements 
and normal stresses corresponding to different 
normalized frequencies, through the thickness 
of the cylinder. Therefore, we examined the normal 
stresses and mechanical displacement profiles for the 
axisymmetric (n  =  0) and non-axisymmetric modes 
(n  =  1) in the hollow inhomogeneous functionally 
graded cylinder. Figs. 9 and 10 show the mechanical 
displacement profiles for both axisymmetric (n  =  0) 
and non-axisymmetric (n  =  1) modes, respectively. 
In case of longitudinal modes, the circumferential 
component v always remains zero along the cylinder 
thickness, whereas the axial component dominates 
in the mechanical displacements. However, the 
axial and radial components are zero for torsional 
modes. In case of flexural modes, as opposed to 
compression and torsional modes, each component 
of the mechanical displacement is coupled with each 
and every other component.

Stress distributions and boundary conditions
Figs. 11 and 12 show the normal stress profiles 

of the hollow FGM cylinder for longitudinal modes 

Fig. 9. Normalized mechanical displacement profiles of the hollow cylinder in case of longitudinal modes, 
n = 0, H/R = 4.00 for (SN/SS/SN): (a) S = 1, (b) S = 4

(n = 0) and flexural modes (n = 1), respectively. As 
can be observed, in case of axisymmetric modes, 
the circumferential stresses Trϕ  are zero, while in 
case of flexural modes they are very low. In case 
of axisymmetric and flexural modes, it is evident 
that all normal stresses are zero on the inner and 
outer surfaces of the cylinder. This demonstrates 
the effectiveness of the mathematical approach 
employed to establish the boundary conditions. 
Although the elastic constants of two adjoining 
layers differ, it is widely known that at the interfaces, 
the normal stresses and displacements vary 
continuously from one surface to the next due to the 
advantages of monotonic fluctuation in the volume 
fraction of the component phases. All higher order 
modes propagate inside the cylinder, and the motion 
of the particles becomes more complicated. The 
latter is what explains why all the constraints are 
zero at the edges of the cylinder.

Method validation
In the course of the study, we investigated the 

dispersion curves of the guided waves propagating 
through the hollow inhomogeneous FGM cylinder of 
the (SS/SN/SS) configuration with various gradient 
shapes. For this purpose, a computer program 
using the Legendre polynomial approach based 
on the previous formulations was implemented 

a)

b)
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Fig. 10. Normalized mechanical displacement profiles of the hollow cylinder in case of flexural modes, 
n = 1, H/R = 4.00: (a) S = 1, (b) S = 4

a)

b)

in MATLAB software. The dispersion curves of 
normalized frequencies and phase velocity for 
three layers of FGM with a cylindrical shape are 
completely undetermined. As shown in Fig.  13, to 
compare our results with the available data (Gong 
et. al., 1999; Hedayatrasa et al., 2014), we calculate 
the normalized frequencies of the hollow FGM 
cylinder with two layers made of stainless steel and 
silicon nitride. Simulations are made considering 
the axisymmetric mode (n = 0) with three different 
gradient index S values for a specific limit when 
kR = 20kH with truncation M = 25. The comparison 
of our results with those reported in literature by Han 
et al. (2002) demonstrates that our methods has a 
high degree of precision and reliability in addition to 
the theoretical and programming equation accuracy.

It is clearly observed that the results of the 
numerical analytical method (reported by Han et al. 
(2002)) are compatible with the results obtained with 
the use of our method. This approach can predict 
the behavior of an infinite-length FGM cylinder 
with quite a high accuracy. The comparison of our 
findings with those found in literature demonstrates 

that our method has a high degree of accuracy and 
reliability.

Conclusion
The goal of the study was to develop a 

numerical approach to solve and compute the wave 
propagation problem in a continuous three-layered 
FGM cylinder, without discretizing the gradient 
structure. The polynomial approach considerably 
reduced the challenges experienced in this context 
and offered access to more rapid and precise 
numerical results. The propagation characteristics 
of the guided waves in three-layered FGM cylinders 
were determined. The obtained results showed that 
the variations of the material properties in the radial 
direction are significantly influenced by the graded 
index. The dispersion curves of the normalized 
frequencies and phase velocities are considerably 
impacted by the graded index due to the continuous 
variation of the volume fraction. The influence of 
the boundary conditions on the normal stresses 
across the radial direction of FG material was 
examined. Based on the simulations, it was found 
that the field profiles are strongly influenced by the 
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Fig. 11. Normal stress profiles for the first six modes in case of longitudinal modes (n = 0),
H/R = 4.00 for (SN/SS/SN): (a) S = 1, (b) S = 4

Fig. 12. Normal stress profiles in case of flexural modes (n = 0), H/R = 4.00: (a) S = 1, (b) S = 4

a)

b)

a)

b)
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electrical and mechanical boundary conditions. The 
comparisons with the results published in literature 
showed that the Legendre polynomial approach can 
model the propagation of acoustic waves in a three-
dimensional FGM cylinder. The results reveal that 

Fig. 13. Comparison for the normalized frequency using the results obtained by Han et al. (2022) 
and the results obtained by the polynomial method at n = 0 and R = 20H

the current approach is extremely accurate when 
compared to other available reference data. All 
acoustic eigenmodes, regardless of their kind, can 
be precisely identified due to the fast convergence 
of the presented method.
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Appendix
The elements required to calculate the eigenvalues and eigenvectors:
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Аннотация
Введение: Строительная отрасль испытывает все большее давление в связи с тем, что требуется максимизировать 
эксплуатационные характеристики при одновременном снижении затрат и уменьшении воздействия на 
окружающую среду. Для решения этой проблемы предлагается новый тип материалов, а именно функционально-
градиентные материалы (ФГМ). Преимущество этих материалов в том, что они способны выдерживать жесткие 
условия эксплуатации без потери своих свойств. Цель исследования: данная работа направлена на дальнейшее 
расширение представлений о типах распространения и характеристиках направленных волн в цилиндрах из ФГМ 
с бесконечной длиной. В ходе исследования мы проанализировали цилиндрическую оболочку, состоящую из трех 
кольцевых слоев, каждый из которых разделен градиентным слоем по толщине стенки. В статье предлагается 
инструмент моделирования, основанный на методе ортогональных полиномов Лежандра. Методы: применяемый 
метод приводит к проблеме собственных значений / собственных векторов. Граничные условия интегрируются в 
определяющие уравнения распространения направленных волн. Рассчитаны кривые дисперсии фазовой скорости и 
нормированной частоты. Кроме того, рассчитываются и рассматриваются распределения перемещений и профили 
поля напряжений для функционально-градиентного цилиндра с различными градиентными показателями в обоих 
типах (осесимметричном и симметричном). Результаты демонстрируют постоянные колебания в эффективном 
ФГМ. Результаты: было обнаружено, что кривые фазовой скорости одного и того же типа распространения 
уменьшаются с увеличением экспоненты степенного закона. Кроме того, граничные условия оказывают большее 
влияние на нормальные напряжения. Точность и эффективность усовершенствованного метода ортогональных 
полиномов демонстрируется на примере сравнения точного решения, полученного численно-аналитическим 
способом, и наших численных результатов.

Ключевые слова: направленные, метод полиномов Лежандра, функционально-градиентные материалы (ФГМ), 
кривые дисперсии.


