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Abstract

Introduction: The FEM reduces the problem of structural analysis for various building structures to the formation and
solution of a system of linear algebraic equations. For this purpose, there are techniques available for obtaining FE stiffness
and flexibility matrices where the main structural deformation characteristics are taken into account. However, the FEM
can also be considered as a special case of the Ritz method in the discrete approximation of the required functions. In
the functional of full potential deformation energy with regard to the considered structure, all adopted stress-strain state
characteristics are taken into account.

Since it is difficult or impossible to find continuous approximation functions both in the classic version of the Ritz method
and in the Bubnov—Galerkin method for some types of edge restraint in such building structures as beams, slabs, or shells,
it is possible to use the Ritz method in the discrete approximation of the required functions (by analogy with the FEM). This
paper presents a method of such calculations using slab calculations as an example. It is shown that, due to introducing
some notations (operators), the process of finding the coefficients of the system of linear algebraic equations creates no
difficulties and is easily programmable. The proposed method is not an alternative to the FEM, which is the most effective
numerical method for the calculation of complex three-dimensional building structures.

Purpose of the study: We aimed to create a method for calculating slabs by the Ritz method in the discrete approximation
of the deflection function for edge restraint cases when it is difficult or impossible to find continuous approximation functions
in the classic version of the Ritz method and the Bubnov—Galerkin method. Methods: Based on the application of the
Ritz variational method in the discrete approximation of displacements for slab calculation, all the basic relations for
rectangular finite elements with 12 degrees of freedom are obtained, and an algorithm for forming the coefficients of the
system of linear algebraic equations is developed. Results: For the first time, the solution by the Ritz method in the discrete
approximation of slab displacements is obtained for the case when two edges of the slab are rigidly restrained and other
two edges are free. In this case, the correct solution of the above problem is possible only with the use of the proposed
method and FEM. For the test problem, we performed a comparison of the results of the calculation using the proposed
method with the results using the classic Ritz method, which showed their very close agreement. The accuracy of the
obtained results was assessed.

Keywords: Ritz method, functional of full potential deformation energy, discrete approximation of displacements, slab,
deflection function, finite element, Hermite polynomials.

Introduction

In the early 1940s, the finite element method
(FEM) was developed by utilizing the idea of the
mesh method. This method originated from structural
mechanics and the theory of elasticity, and was later
comprehended by mathematicians who often call

deformation energy of the slab (plate), the stiffness
matrix [K] is found. If we introduce a vector of nodal

displacements for FE {q} = {ql,qz,...,qlz} and a
vector of nodal forces {R} , based on the expression
for work of external forces, then the relationship

this method variational-difference, thus emphasizing
its mathematical nature. Thanks to the works of
Argyris (1961), Clough (1960), Courant (1943),
Hrennikoff (1941), Zienkiewicz (1975) and others,
this method has been widely used in calculations
of various components of building constructions,
buildings, and structures (llyin et al., 1990; Postnov
and Kharkhurim, 1974; Trushin, 2018).

When slabs are calculated with the use of the
FEM, generalized displacements g, are introduced
for each FE. Based on the type of potential

between these vectors according to Postnov et al.

(1987) will have the following form: {R} =[K]{q}.
In the work by Postnov et al. (1987), the expressions
for the coefficients of the matrix [K] are not given
due to their cumbersomeness. In contrast to the
FEM, the convergence of the solution by the Ritz
method was proved (Mikhlin, 1970).

Since building structures are quite diverse and
have different configurations and characteristics,
different types of finite elements (FE) were
developed (Auricchio et al., 2016, Bishay et al.,
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Farias et al., 2018, Zienkiewicz et al., 2013). Various
works (Gander and Wanner, 2012; Li et al., 2014;
Nwoiji et al., 2017; Qu et al., 2013; Xue et al., 2021;
Weinan and Yu, 2018) address the improvement of
variational methods for the calculation of plates and
shells and the development of modern computing
systems based on them.

In construction practice, slabs having two
opposite sides free are often used. When
calculating such structures by the Ritz method in its
classic version, it is impossible to find continuous
approximation functions in this direction. Therefore,
this paper proposes to use the Ritz method in the
discrete approximation of displacement functions.
The purpose of this study is to extend the scope
of application of the Ritz method in solving new
problems and develop a programming-friendly
algorithm to calculate the coefficients of a system of
linear algebraic equations.

Discrete approximation of the deflection function

Let us divide the area D{0<x<a,0<y<b}
occupied by the middle plane of the slab into
rectangular parts D]-,i{j:1,2,...,m;i:1,2,...,n}.
Then we denote the points of intersection of these
lines by z;; (Fig. 1). Then we denote the area D, ;
limited by points z;;, z;;., zj; Zj41,41 (nodal
points) by e; ;. Let us also denote the area D division

interval in the direction of axis Ox by 4, = £ andinthe
m

direction of axis Oy —by h,, = 2. The total number of
n

the area D division points (nodal points z; ;) will be
(m+1)(n+1)=mn+m+n+1, including internal nodal
points ((m—1)(n—1)=mn-m-n+1), and boundary
nodal points (2(m—1)+2(n—1)+4 =2m+2n).

By analogy with the FEM, we will call the area e, ;
a finite element (FE). The deflection function W(x, y}
and its partial derivatives W, (x,y) and W, (x, ) will
be considered unknown functions. To approximate
these functions on the entire area D, we will first
construct them on partial areas D;;, i.e., on FE
e; ;» ensuring continuity and differentiability of the
obtained approximation of the required functions on
the entire area D.

We will calculate the values of the required
functions W, Ww,, W, at each nodal point z;;
considering those values unknown parameters. To
approximate the required functions on FE e, we will
use third-degree splines (llyin et al., 1990) in the form
of orthogonal Hermite polynomials (Korn and Korn,
1974). The most convenient form of such polynomials
was described by Postnov and Kharkhurim (1974).
From one-dimensional polynomials of variables x
and y, two-dimensional functions of variables x and y
@]'(x, y) are formed, and unknown functions W (x, y),
W, (x,y),Wy'(x,y) on FE ¢;; are presented as the
sum of products of unknown numerical parameters
(values of the required functions at nodal points) and
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known approximation functions (pf(x, y). On other FE,
this approximation is considered to be equal to zero.

Since at each nodal point Z, there will be three
unknown numerical parameters, then FE e, will have
12 degrees of freedom.

The FE are connected to one another at the
FE nodes. Let us necessitate the compatibility of
vertical displacements W(x,y) and rotation angles
Wy (x,y).,W,(x,y) at the nodal points for the FE
adjacent to the node.

On FE ¢; ;, let us denote the following:

_w it _wit _q it
Wii=Wi s Wi =W57 Wi =05,

it ) =wl
Wj+l,i+l_W4 ,(Wj,,)x _WS ’

’

(Wj’”l )x N W6j,i’ (Wj+1,i )x' - W7j’i’ (Wj+1,i)x, - W7j’i,
(Wj+1,i+1 )x =Wy, (1)
(Wj,i)y =1 (Wi )y =W (W )y — W,

(Wj+1,i+1 )y = lez’l-
Therefore, the deflection function 1 (x,y) on FE
ej; can be represented as follows:

12 L
W (53 le, = 2O (x.), @)
k=1

and on other FE, this function is taken equal to zero.
On the entire area D, W(x,y) is determined
m—1n-112
as W,,=> > >W"¢/"(x,y). Each node will
i=0i=0 k=1
have three] unknown parameters. In total, there
will be 3(m+1)(n+1)=3mn+3m+3n+3 unknown
parameters.

To approximate the required functions, Hermite
polynomials (Postnov and Kharkhurim, 1974) are
used in the FEM. On FE ¢, ;, they take the following
form (in the common coordinate system xOy)

~ h£—3hx(x—x-)2+2(x—x<)3

E({l(x)_ ;l; -
E({z (x)- 3h, (x—xj );—Z(x_xj )3’ "
x
Eljl (x)- h; (x—xj)—th (:z_xf )2 +(x—xj)3 |
x
Elfz (x): —h (x—sz;+(x—xj)3

By substituting x with y, A, with &, j with i, we

can obtain Ey; (»), Epy (»), Ef1 (»), Elz (»).
Let us introduce the following notations (Postnov
and Kharkhurim, 1974):

O () = Ef, (x)- Egr ()
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Fig. 1. Area D divided into FE
¢£l (x,y) = E({l (x)~E62 (y) , d)é’ (x, ) variation limits x and y will be x; <x<x;,,
Joi -5/ LRl Vi< y< i
¢3i(an’)—E(;2(x) E(in(y)’ ""On FE e; ;1 In expansion g ), there will be
¢4”(x,y)=E0.2(x)-E(.)z(J’)’ expression W(x y)|e o ZW}[ 1¢]1 1()6 y)
03" (x.0) = By (x)- Eor (), e
-, . . B Jri— .
d%,z (x’y):Elj] (x)-E(’)2 (y) 4) W( {,) denoted by W enld, therefore,. .ﬂ:nctlon
.. . . l ' i S
()= £ () E ). o) )i e ()
00 (xy) = Ey (x)-Elp (7). Wy’(zj,) wih™ and ¢y (x,»), variation limits x
i _ i and y willbe x; <x<x;, y_ <y<y
q)?i((x,y; E(;léx; E?Ey;’ On FE e;_j; in ef;(rpar;smn (2)lthere will be
b1 (%) =Epy (x)-Epp(v), i, j-1
b : . expression V), = W (v, ),
ol (5.) =y (5)E0 (). el = L)

oy (x.7) = g (%) B2 ()
The values of Hermite polynomials at the nodal
POINtS z; ;, z; iy1, Zj41,in Zj41,i41 @€ O Or 1. The values

of the derivatives of E({l (x)and E({z (x) with respect to

x and first-order derivatives of £y, () and Eg, (») with
respect to y at nodal points are also equal to 0 or 1.

Each internal nodal point z; ; belongs to four FE
(Fig. 2).

The order of numbering at the nodes of functions
w, W, Wy' is shown in Fig. 2 by numbers. Let us
describe "in detail the W(x,y) approximation on
each FE adjacent to the node z;; Below are the
expressions W (x,y) and approxmatmg functions
in formula (2) for each of the four FEs that have
a common node z; ; (Fig. 2).

On FE e, in expansion (2), there will be

Jiio
ZW”¢ () W(z)
k=1

denoted by /' and, therefore, function ¢/ (x,),

W’é(zj”‘)_WSJ’l and 4" (x.»), Wy (z;) - " and

expression W (x,y) e

W(z_,-,i) denoted by Wy~ L and, therefore, function
S , L oy

o7 (), Wilz) — W and oM (),
W, (zj’l-) - Wlfl_ll and ¢/, 1’(x,y), variation limits x
and y will be x;_, SXSXp Y <Y S Vi

On FE e;_;;, in expanS|on (2), there will be
expression W (x, y)|e = ZWJ —Li- 1¢f —Li- 1(x ),
W( )denoted by Wf Li-1 and therefore, function
(M 1: l(x,y), W;<Z~-)—W] —1,i—1 and ¢] —1,i— l(x’y),

x,y), variation limits x
and y will be x;_, Sxij, ViolSy<y;.

Method of obtaining algebraic equations

The functional of full potential deformation energy

with regard to a rigid slab has the following form:

:_” [62W oW J2+

ow )
+2(1-p) [Gxay] -

o°wW o*w
ox? 6y2

q
2L w \axdy, (5
R ly, (9)
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Fig. 2. FE adjacent to the node z ;
EW o .
where D = — cylindrical stiffness of the
12(1-p2)
slab;
E — elasticity modulus;
h — slab height;

u — Poisson’s ratio;

W — slab deflection function;

q — transverse load;

a, b — slab dimensions in plan view.

The boundary conditions corresponding to the
type of slab contour fixing are also specified. All this
(the functional and boundary conditions) constitutes
the variational problem to be solved.

On the entire area D occupied by the slab, the
W (x,y) approximation will have the following form:
m—1n-112
PIDIDN AL CSING)
J=0i=0k=1 B

Tofindthe unknown parameters w,/”', we substitute
expression (6) into expression (5), and then find
the derivatives of the functional E, (Wm,n (x,y)) with
respect to the unknown parameters at each internal
nodal point of the area D and equate them to 0. Each
node will have three unknown parameters.

Thus, we obtain the following:

aES(Wm,n)_ oE, ( ’"”)—o Oy (Wi )
6W(zj’i)
when j=1,2,...,

Wn (%)=

- an(z,-,i) - ow! (zj,l-)
m-—1; i=12,...,n—1.
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Since there will be (m—1)(n—1) intemal nodal points,
then there will be 3(m—1 (n—l):3mn—3m—3n+3
such equations.

The missing equations can be obtained using the
boundary conditions.

Since each internal nodal point z;; belongs
to four FE at once, then each equat|on |n (7) will
contain four summands, according to the number of
FE adjacent to the nodal point Zjj

Thus, the system of equations (7) can be written
as follows:

aES(ej,,) OE ( €ji- 1) OF; ( €j- 1l')+

aVV]j,i alel aWj —Li
OEg\ej_1-
OE, (ej,,) OF, ( e 1) aEs(ej_U)
— + — +
oW owgli oL
OE, (e; ;..
+%=O, (8)
é’ES(ej,,) OE, ( e 1) OF, ( ej 1l.)
owylt am Tt ey /T "
OF, (e '71,'71)
+ 6;,12;—1,;—1 -

In equations (8), the functional E, is considered
only on those FE that are adjacent to the internal
node z;; since the derivatives of the functional of
other FE with respect to W (25 Wi (27 ) Wy (2.0 ) will
be 0.

Formation of the coefficients of the system of
linear algebraic equations

The derivatives of functional (5) are taken with
respect to the unknown parameters in each internal
node of the area D.

At each nodal point, e.g., z iz the three unknown
parameters are the deflection value W, the value W,
and the value 7. Hence, the derivatives of the functional
are taken with respect to the parameter W, parameter
W, parameter Wy’, and these derivatives are equated to
0 (Ritz method procedure). We obtain three equations
at each internal node. There are four FE adjacent to the
node z ; T . each of which has the specified parameters
in the common node z ; ;. Therefore, there will be four
terms in each equation, wh|ch are derivatives of £ with
respect to the corresponding parameter |ncluded in
each FE (see (8)).

The four FE adjacent to the node z;; ; contain nine
nodal points of the area (z; 2,1 z; 41, 2ji-1 Zj-Lis

Zj-li=1r Zj-Li+l» Zj+Li+10 Zj+1,i— 1) Therefore, in each
of the three equations, there will be nine parameters
of values W, nine parameters of values 7/, and nine
parameters of values W/, i.e., in each equation, there
will be 27 terms and, accordingly, 27 coefficients,
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the values of which must be determined to solve the
system of linear algebraic equations (SLAE), which
is obtained after applying the described method to
the initial variational problem.

For convenience of further transformations, we
introduce the following notations (operators), based
on the type of functional (5):

FW(flﬂfzaoL B):
¢ﬁXX¢f2xx ¢ﬁXX¢fzw ¢f1yy¢fzxx ¢f1yy¢fzw

+2(1~ )(¢ﬁw¢fzxy__¢ﬁqu)f2yy B ﬁyyq)szXJ’

. Yj+l o i - Xj+l oy
A= [ae [ (v A= [ dx | (v,
X Vi Xj Yi-1
Y Yia Vi

= T Oy - 7 f (a

Xj-1 Vi
Bl =40 (of )+ Af’(q)/’ 1)+
+A]l(¢] 11)+Ajl(¢j —1,i-1 ,

B{,i=Alj,i(¢g',i)+A2j,i(¢é',i—l "

)

)
B o o)

)

+Af’(¢f 1’)+AJ’(¢] L), 9)
+A]l(¢j 11)+Ajl(¢j —1,i-1
Now all three equations of system (8) can be

written as follows:
12

Z[Alj’i (W Fw (k.1 o))+
k=1
+4f (ka”"le(k,z, Jri=1))+

A (WY W (k3. -1,0)) +

i (g J-Lin1 o
+A‘{l(WkJ i FW(k,4,]—1,1—1)):|:%Bllz,
12

Z[A{J (i Fw (.5, 1,0) )+
-1)

k=1

+A{’i(W,j‘l’i“Fw(k,s,j—1,1'—1))} %B-zj’i, (10)

12

ICZ_:I[A/’(ka W (k,9,,0) )+

Ad (W (10, 7,1 -1) )+

o o
Al (YW (k11 - 10) )+
Al (W (K12, - Li-1)) = L BJ",

These equations ensure continuity of

the approximation of functions W(x,y) and
W);(x,y),Wy (x,y) on four FE adjacent to the node
Z;
NWe will denote the values of the parameters w/,
at the nodal points by wx, butitis necessary toadd 4 to
the indices of the parameter w, and, correspondingly,
we will denote the values of the parameters w', at the
nodal points by wy, but it is necessary to add 8 to the
indices of w.

The first equation of system (10) can now be
written in the foIIowing form:

Joi Joi
al WJ +a2 J+1l+a3 j,i+1+a4 jl 1+a5 j—l,i+

+06 Wj—l,i—1+a7 Wj—l,i+1+a8 Wj+1,i+1+

+ag’iwj+1’,-,l + a{éiwxj’,- + aljl’iwxjﬂ,i +
+a1jéiwxj+1,l~_1 +a1j9’iwyj’,~ + a{(’)iwyjH,i +
+aiwy it = %Blj .
The first nine coefficients alj’" -
are as follows:
al =4 (FW (L1, ,0))+ 49" (FW (2,2, j,i-1))+
Aj’i(FW(3 3,j—Li))+ 4] (FW (4,4, j-1i-1)),
= A (FW (3,1, /.0))+ 49" (FW (4,2, j,i-1)),
T= 4l (Fw(2,0,),0))+ 4 (FW (4.3, -10)),
:AJ’(FW(I 2,j,i=1))+ 4] (FW (3,4,j-1i-1)),
AJ’(FW(I 3,j—Li))+ 4] (FW (2,4, j-1i-1)),
U= a] (Fw (1,4, /-1i-1)),
aj’ = 4" (FW(2.3,j-11)),
al’ =4 (FW (4,1, /.0)),
ay’ =4y (FW (3,2, j.i-1)).
The parameter w has an index that changes
from 1 to 4, and the value of f; in the operator

FW(fl,fz,a,B) for that parameter changes as well.
For the parameter wx, the index f; wiII change from

5 to 8. Hence, the coefficients a{O’ —a18 are obtained

from the corresponding coefficients a{ —a;’ by
adding 4 to the corresponding value of f. Similarly,
to obtain the coefficients alf9’ —ajy, we need to add
8 to the value f; in the corresponding coefficients

1]1 g * In this case, in the first equation of system
(10), the parameter f, in the operator FW(fl,fz,oc,B)
changes from 1 to 4. In the second equation of
system (10), this parameter changes from 5 to 8,
and in the third equation of system (10), f, changes
from 9 to 12.

ay’' are basic and

+4
+4
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The second and third equations of system (10)
can be briefly written in the foIIowing form:

Joi Joi Sy
b w; ;i +by j+1l+b w,+1+b Wi +bswi i+

o , , ,
+bg Wj—l,i—l+b7 Wj—l,i+1+b8 Wj+1,i+1+b9 Wj+1,i—1+

Joi Joi Joi
b10 WX +b11 WX 4 +...+b18 WX 1ol +

1 Jd i _ 4 gii
+bjg wyji+b20 WYl +...+b27 WY1t _BB .

]l
]+111+C10Wx -+

Cl W +C2 j+l,i+"'+c9

ok Jsl i
+c11 WXy e F O WX +019 wy;i+

+c£(’)lwyj+1’l- +...+cé’7’wyj+17i_1 = %331,1.

To obtain the coefficients 5/ —5J5, we need
to add 4 to the value £, in the corresponding
expressions of the coefﬁments alf ’—a§7’, and to
obtain the coefficients ¢ 027, we need to add 8
to the value f, in the correspondmg expressions of
the coefficients /" —ajs. Thus, the algorithm for
calculating the coefﬁcients of the system of linear
algebraic equations (SLAE) of the method for the
discrete approximation of the initial functions can be
presented in the form of Table, which will make it
easy to design a program for their calculation with a
computer.

When we moving to a new nodal point z; ; its
coordinates x; and y; change. That is why these
values should be changed in the expressions of
the approximation of the functions ¢f'(x, y) (4).
Correspondingly, the coefficients of system (10)
should be changed too. All these changes are
carried out in a cycle with respect to variables j, i and
do not pose any difficulties.

Calculation examples

As anexample ofthe use of the considered method
for slab calculation, let us find the deflection of a
square slab with side a, which is under the uniformly
distributed transverse load g. Let us assume that the
slab has rigid restraint along the contour, therefore,
on the contour, w=0,w, =0, w’y =0. The area
D{0<x<a;0<y<a}is divided into four FE (Fig. 3).
Due to the symmetry of the problem, at the node z; ;,
the first-order derivatives with respect to x and y will

be equal to 0. Only the deflection at the node z;
remains unknown.

In this case, the approximation W (x, y) at each of
the four FE will have the following form:

a a
(=50 =3)
OnFE ¢ W(x,y) = wll’ld)%’l (x,y),

a a
Wheregﬁxﬁa, Eéyﬁa,

On FE elO

On FE ¢ : W (x,y) = w4’ ¢4’ (x, ),
whereos)cs%, OSyS%.

Here, wi', w5, wi?, wi? are w(z, ).

The equation for finding w(z;;) will have the
following form:

6f(el,1) . 6f(el,o) . 6f(eo,l) . 5f(€0,0) _
owawd® et awd?

The compact form of this equation will be as
follows (with the D multiplier omitted):

w(zll)[Alo (Fw (LLL1))+ A3 (FW (2,2,1 0))+

A (FW (3,3,0,1))+43 (FW (4,4,0,0)) | = & FLE

where ”
A ()= ax [ 0dv. 4( )= [ dx [ Odb.

al2  al2 al2 0

al2 a al2  al2
A ()= [ dc [ 0dv. 4l ()= [ dx [ Oy,

0 al2 0 0

B = ) (o1 )+ 9 (05 )+ 9 (05 )+ 9 (03°).
Since there is one unknown parameter w(z;)

in the resulting equation, then the equation can be
written in the following form:

Algorithm for calculating the SLAE coefficients for the slab

Coefficient type

Coefficient No. ]1 i Jii Jol Jl Jsl
ap —ay bi”" —by; G =6y

19 Basic 1< £ <4 1< f1<4
018 1< f, <4 fi=fi+4 NH=h+4
fi=h+4 fo=rH+4 So=/2+38

1007 1< /<4 fi=fi+8 SHi=h+8
fi=fi+8 fa=fr+4 fr=/2+8

62



V. V. Karpoy, E. A. Kobelev, A. M. Maslennikov, A. N. Panin — Pages 57-67
RITZ METHOD IN THE DISCRETE APPROXIMATION OF DISPLACEMENTS FOR SLAB CALCULATION

RS
N
o
N
N
(3]

0 al?2 a

Fig. 3. Square slab divided into four FE

W(Zl’l)’A = %Blo

Let us calculate the integrals in the corresponding

expressions.
Then we express the functions

O (3.0). 05" (x.9).45" (x.9).45° (x.), using (4):

(0) 35 (=04 +2(-23)
(9]

(o) 35 (-aa) +2(-2)
(9) |

1,1
¢1 =

The derivatives of the function ¢%=1 (x,y) will take

’ —6g+12<x—%)x
(¢5)
(e 35 0-ea) 2b-e)
(¢)

1,1 _
(I)lxx -

(ea) -35-ea) +2-ea)
(23]
X—6Z+12(y—%)’
(¢3)
L ke
(23]
e i e
)

R T REER A

Ll _
¢1yy -

L _
¢1xy -

al2  al2
2 47,177
201w (o) bt o= 227,
a a " a2
I dxj oy (x,y)dyzi.

al2  al2
Other integrals are calculated in the same way.
Thus, we obtain the following:

2
Bloza—, A:188,697’
4 a?

a4q

and, therefore, w(z;; ) =0, 00132=%.
For comparison, let us find the deflection of the
slab under consideration using the Ritz method
in the continuous approximation of W (x,y) in the

following form:

W (x,y) = w sin? nisin?n .

a a
By substituting this expression into functional (5),
we find the derivative of the functional with respect
to w; and equate it to 0. As a result, we obtain the

following equation:

OE o ! x
2 :Dfdxj w 4(—] cos? 2nZsin® w L+
a

ow 0 0 a a
T 4 X
+4| = | sin* 2 cos? 2n1+
a a a
T 4 X X
+2-4| — cosZn—sinznlsinzn—costh +
a a a a a

a a a

4
+2(1—u)w1 {(Ej sin® 21 = sin® 212 —
T 4 X X
—4(—) cos 21— sin’ n—sinznzcos%cl -
a a a a a
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~ 4 4in? 1 X sin? nz}dyzo. (12)
D a a

4
Whence it follows that: wy =w(z;) =0, 00128%

The exact solution of this problem is known:
W(" "j 000126‘1
22 D’

Thus, the solution obtained by the Ritz method
in the continuous approximation of the deflection
W(x,y) differs from the exact one by 1.6%, and
the solution obtained in the discrete approximation
differs from the exact one by 4.6%.

The discrete approximation of the deflection is
reasonable when the boundary conditions are such
thatitis difficult orimpossible to find an approximation
of the deflection by functions that are continuous
over the entire area.

Now, in the example under consideration,
let us change the slab edge restraint conditions
Let us assume that at y=0 and y=a, the edge
is rigidly restrained, and at x=0,x=gq, it is free.
Therefore, at the nodes z, ,, zj, z,; (see Fig. 2), the
deflection will not be 0. Moreover, at the nodes o,
and z,;, w, will not be equal to 0, but wy at these
nodes will be equal to 0 due to symmetry. Thus,
W(Zl,l)’w(zo,l) (Z21) (ZOI) (221) will be
the sought parameters. Let us express the W (x,y)
approximation in this case for each of the four FE.

W(x7)|a, =

=0y () +wdos! () + 07105 (x.),

W (x,5)|g, =

= w5 03° () w005 (3, 0) + g P05° (7).
W(x.9)|e, =

=103 (2, 0) + o) (3 y) + 08 (x.),
W (%.3)|ey =

89400 (5,3) w0420 (1,3 w00 (5, ).
Here

1,1 10 01 0,0 1,1 1,0
Wl , 2 . 3 ,W4 _W(Zl,l)’WS ,W4 _W(Zz,l)’

01 . 0.0
W, wy _W(ZOI)

1,1 10

W7 ,W8 —Wx(szl) ng,wgo

w'y (Zo,l ) 1

The functions ¢2"B at o equal to 0 or 1 and p equal
to 0 or 1 have form (4).
Let us denote the following:

W(Zl,l ) =M W(Zz,l ) =Wl W(ZO,I ) =Wo,1:

wy (22,1) =wxyp, Wy (20,1 ) = WXg 1.
Now we can write the following:

W(x.y)

1l 11 11
ey = W0 103 w07
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1,0 1,0 1,0
W (2,3)|qo =103 +woidg +wxy o5,
0.1 0.1 0.1
W (x,3)|¢gy =Wiad3" +Wwo 10y +wxo 195
0,0 0.0 0,0
W (2,3)|epo = Woudy” +wiady" +wxo g -

There will be one internal point z,, therefore,
there will be one equation:

OE, (e1s) ) OE, (e10) . OE, (e0 ) . OE, (e0) ~
owy | ow ow owy
By using the previously adopted notations

(operators) and functional (5), we can write this
equation as follows:

wiy A (FW (LLL1))+wy 4 (FW (3,1,1,1)) +

+wxy A (FW (7,1,11))+ w43 (FW (2,2,1,0))+
0))+

)
+wy A3 (FW (4,2,1,0))+wxy, 43 (FW (8,2.1,
w43 (FW(3,3,0,1))+ w143 (FW (1,3,0,1)) +

wxo 143 (FW (5,3,0,1))+ w1 43 (FW (4,4,0,0)) +
0)

)
)

Having calculated the corresponding integrals,
we reduce this equation to the following form:

+wo1 A4 (FW(2,4,0,0))+wxo, 43 (FW (6,4,0,0)) =

alwl,l + a2W2,1 + G3W0’1 + Cl4W)C2’1 + aSW'xO,l = % ap,
where
1 1 1
4] :188,576—2, a) :—46,35—2, as :—46,35—2,
a a a

2
a

1

as :—16,811a—2, dg :T.

Another four equations are obtained from the
boundary conditions at the edge at x =0, x = a.. Since
these edges are free, the moment and transverse
force must be 0 here, which means thatat x =0, x =g,
the second-order derivative of the deflection wi,
and the third-order derivative w},, must be 0. Thus,
we obtain the foIIowmg cond|t|ons

W;x (22’1 ) 0 W (22 1) 0, W;x (ZO,l ) = 0,

1
ay =16,811—,
a2

n
Wi (ZO,l ) =0.
And, therefore,
” "
Wxx (22,1) 61’1 = 0’ wxxx (22,1) 61,1 = 0’
” "
Wiy (ZO,I) €1 =0, Waxx (ZO,I) €1 =0.

The missing four equations take the following
form:

2
oW 11 24 11 24 18
—_— =W ——wy —+w; —=0
e 1 3 7 ’
o> 1 a’ a* a
3
ow 96 96 24
ey = S g =<0,
ox ’ a a a
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WY a2 a2 i 8
e 3 1 5 -
ax2 0,1 aZ a2
ow 0196 0,1 96 0124
“Slen =M 3T 3 HwsT =0
ox ’ a a a
Here
1,1 1,1 _ 1,1 _
Wl = Wl,l . W3 = WZ,l ,W7 = sz,] N

0,1 _ 0,1 _ 0,1 _
W3 = Wl,l . Wl = WO,] N WS = WXO,I .

The same equations are obtained if we use the
following conditions:

" " "
Wiy (22,1) eo = 0 Wi (22,1) e = 0 Wix (20,1) o =0
"
Waxx (ZO,I) €0 0.
Thus, to find the wunknown parameters

Wl,l s Wz)l, WO,l . wxz’l . Wanl, we have five equations:

24 24 8
—— Wit Wo 1 ——wx; =0,
a a a
% W % Wy 1 +— WX, 0
M1 3 Wt wxp =0,
03 613 Clz
24 24
—2W1>1 ——2W2’1 +—WX2’1 = 0,
a a a
% W % Wh 1 +—Wx 0
SIMI T Wt wx =0,
613 Cl3 a2
188,576 46,35 46,35 16,811
T M T T Wl T Wt WA -
a a a a
16,811 a’q
— 5 WxO,l =—.
a 4D

If we add the first and third equations, we will obtain
wxg; =wxy, and if we subtract the fourth equation
from the second equation, we will obtain wy | = w; .
The equality w; (z91)=w, (zo;) is possible
only if these derivatives are 0. Therefore, since
W(ZO,I ) = W<22,1 ), then W(Zl,l ) = W(Zo’l ) = W<Z2,1 )
Given all this, based on the last equation, we obtain
the following:

188,576 96,7

2

aq
5 M1 W = >
a

2 4D

4
therefore, wi; =0, 0026"—Dq.

By analyzing the obtained solution, we can
conclude that the slab in this case deforms

axisymmetrically, i.e., the deformation along the
x axis is constant. In this case, the calculation for
the deformation of the slab can be replaced by the
calculation for the deformation of a beam of length a,
rigidly fixed at the ends at y =0, y = a. The equation
of equilibrium of the beam will have the following
form:
wiv - 4 ’
EI
and the general solution can be written as follows:
4 3 2
W(x):%;—ét+cl%+cz y?+63y+c4.
Based on the boundary conditions at
y=0,y=a,W=0,W =0, we will obtain:
2
qa q4a
C3—0, C4—0, = ,C3—12E1.
Therefore, the deflection of the beam under
consideration can be expressed by the following

function:
g(»* a 3 a* »
w =2 |yl 4+ ,
=gl 1Y "%
and at y =2, the deflection will have the following

form: 4
w|<1=0,0026%4.
2 EI

Conclusion

The system of linear algebraic equations
obtained in the above examples contains 27 x 3 = 81
coefficients. And only the first nine coefficients are
basic. Other coefficients can be found by recurrence
relations based on these nine coefficients
(see Table). Thus, due to the introduction of some
notations (operators) FW, 4/', B}, the process of
finding the coefficients of the system of resolving
algebraic equations is very simple and convenient
for programming.

The proposed method of slab calculation by
the Ritz method in the discrete approximation of
displacements cannot serve as an alternative to the
FEM, but it is very convenient for the calculation of
relatively simple components of building structures,
such as beams, slabs, and shells. However, the
calculation of complex three-dimensional structures
is possible only with the FEM.
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METOZ PUTLA MPU AUCKPETHOM ANMPOKCUMALMA
NEPEMELLEHUA ONSA PACYETA MNIUT

Bnagmnmnp Bacunbesud Kapnoe, EBreHun AHatonbeBund Kobenes*, AnekcaHap MaTtBeeBuy MacneHHUKOB,
Anekcangp Hukonaesud NaHuH

CaHkT-TleTepOyprckuii rocyaapCTBEHHbIA apXUTEKTYPHO-CTPOUTENbHbIV YHUBEPCUTET
2-aa KpacHoapwmerickas yn., 4, CaxkT-Ietep0bypr, Poccus

*E-mail: evgeny.kobelev@gmail.com

AHHOTaUuA

BeeaeHue: MK3 cBoauT 3agady pacyeTa caMmbliX pasfnmyHbIX CTPOUTENbHbBIX KOHCTPYKLMIA K (DOPMUPOBAHNIO U PELLEHUNIO
CUCTEMbI NMUHENHbIX anrebpanyeckux ypaBHEHWR. [ns STOro CyLlecTBYHT METOAMKM MONyYEeHUs MaTpuL, XXEeCTKOCTU U
nogatnuneoctu K3, B KOTOPbIX YYMUTHIBAKOTCS OCHOBHbIE XapaKTEPUCTUKN AedOpPMUPOBaHNS KOHCTPYKLUMU. Ho MK moxHO
paccMaTpuyBaTh U Kak YacTHbIN cryvan metoda Putua npy AUCKpETHOM annpoKCMaLmMm UICKOMbIX (pyHKUMIA. B dyHKLMOHane
MONMHON MOTEHUMANbHOW 3Hepruv OedOpMUPOBaHUSI PacCMaTpUBAEMON KOHCTPYKUMW YUYUTLIBAKOTCH BCE MPUHATHIE
XapaKTepPUCTUKM HanpsPkeHHO-AehopMMPOBaAHHOIO COCTOSIHMS. Tak Kak [Ofisl HEKOTOPbIX BWOOB 3aKpenyieHust kpaes
TaKMX CTPOUTENbHbIX KOHCTPYKUMI Kak b6anka, nnuTa unu obonoyka CroXxHO UM HEBO3MOXHO nogobpaTtb HenpepbiBHbIE
annpokcummpytoLme yHKLMM Kak B Knaccu4eckom BapuaHTe Metoda Putua, Tak u metoge bybHoBa — ManepkuHa, 1o (Mo
aHanornm ¢ MK3) MOXHO ncnonb3oBaTh MeToaa Putua npyv AUCKPETHOM annpoKcMMaumnmM UCKOMbIX dyHKUMIA. B pabote
Ha MpumMepe pacyeTa NNUTbl JAeTCs MeToauKa MpoBedeHMst Takux pacdeToB. [MokaszaHo, YTO BBEAEHMEM HEKOTOPbIX
0603Ha4YeHNn-0NepaTopoB MPOLECC HaxXOXAEHUst KOA(PMULMEHTOB CUCTEMbI NMHEWHbLIX anredpanyeckux ypaBHEHWN
He BbI3blBAET 3aTpyaHEHWI 1 nerko nporpammupyetcs. lNpepnaraemas mMeToauka He siBnsieTcs anstepHatuson MKO,
KOTOpbIN siBNsieTca Hanbonee apekTUBHBIM YUCTIEHHBIM METOAOM AN pacyeTa CrNOXHbIX TPEXMEPHbIX CTPOUTENbHbIX
KOHCTpyKUWMIA. Llenblo paboTbl ObiNo co3gaHne MeETOAMKM pacyeTa NnvMT MeToaoM PuTua npy AUCKPETHOM annpokcuMauum
dyHKUMM NpornboB Ansi CriyyaeB 3aKpenneHust KpaeB, KOorda CMOXHO MU HEBO3MOXHO MogobpaTtb HenpepbiBHble
annpokcumupytowime dyHKUMM B KNaccuyeckom BapuaHTe meTtopa Putua n metoge bybHoa — ManepkuHa. MeTtoAabi:
Ha ocHoBe npumeHeHUs1 BapnaLuMOHHOro metoaa Putua npu OUCKPETHOW annpoKcumauum nepemeLleHnii ans pacyeta
NAWT NOMyYeHbl BCE OCHOBHbIE COOTHOLUEHUS AMsi NPSIMOYrOfibHbIX KOHEYHbIX 3remMeHToB ¢ 12 cTeneHamm ceoboabl v
pa3paboTtaH anroput™ hopMUpoBaHnNs KO3 MULMEHTOB CUCTEMBI NIMHEWHbIX anrebpanyecknx ypaBHeHuin. PeynbraTtbl:
BnepBble nony4eHo pelueHre MeToaoM Putua npy AUCKPETHON annpokcMMaLmMm nepemMeLLeHnin NnTbl AN cryyas, koraa
[Ba Kpasi NNTbI XXEeCTKO 3aLleMreHbl, a Apyrue Aea kpasi cBoboaHbl. [Mpu 3TOM KOpPEKTHOE peLleHre yKasaHHOW 3aaaun
BO3MOXHO TOMbKO Mo npeanaraemoi metoavke n MK3. [Ins TectoBoi 3agaqv 6bi10 BeINOMHEHO CPaBHEHWE Pe3ynbTaToB
pacyeTa Mo npegnaraeMon MeToauKe C pesynbratamy Mpu UCMoNb30BaHUM Kraccuveckoro metoga Putua, koTopoe
nokasarno ux Becbma 6nm3koe coBnazeHve. OLeHeHa TOYHOCTb NOMyYEHHbIX Pe3ynLTaToB.

KnroueBble cnoBa: Mmetogq Putua, QyHKUMOHaN MOMNHOWM MOTEHUManbHON aHepruv aedopmaumu, AUCKpPeTHas
annpokcumaums nepemMeLLeHnin, Nnuta, yHKLMS Npornda, KOHEYHbIN 3NIEMEHT, MHOTOYNEHbI pMuUTa.
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