INVESTIGATION OF THE SHEAR STRENGTH OF REINFORCED SILTY SAND

Feknous Hadjer, Della Noureddine, Denine Sidali, Missoum Benziane Mehdi, Flitti Abdelhamid, Sert Sedat, Ertan Bol, Apkyn Ozocak

Abstract


Introduction: This paper presents an experimental investigation that aims to study the influence of silt content, glass fiber content, and their combined effect on the shear behavior of silty sand. For this purpose, a series of tests using direct shear apparatus (as methods) were carried out on sand mixed with various silt and fiber contents. Samples were prepared with a relative density of 50 %, and each mixture was tested at three different normal stresses. The experimental results indicated an increase in shear strength at 10 % silt content, followed by a decrease in shear strength with increasing silt content from 10 % to 30 %. It was also found that 0.5 % is the optimal content that can be added to sand-silt mixtures to enhance their shear strength and friction angle, although the mixtures become more contractive.

Keywords


sand, silt, glass fiber, shear strength, cohesion, friction angle

Full Text:

PDF

References


Ahmad, F., Mujah, D., Hazarika, H., and Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications. Journal of Cleaner Production, Vol. 35, pp. 102–107. DOI: 10.1016/j.jclepro.2012.05.047.

Aouali, N., Benessalah, I., Arab, A., Ali, B., & Abed, M. (2019). Shear strength response of fibre reinforced Chlef (Algeria) silty sand: laboratory study. Geotechnical and Geological Engineering, Vol. 37, Issue 2, pp. 1047–1057. DOI: 10.1007/s10706-018-0641-5.

Arab, A. (2009). Comportement monotone et cyclique d'un sable limoneux. On monotonic and cyclic behavior of silty sand. Comptes Rendus Mécanique, Vol. 337, Issue 8, pp. 621–631. DOI: /10.1016/j.crme.2009.08.001.

Belkhatir, M., Arab, A., Della, N., Missoum, H., & Schanz, T. (2010). Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes rendus. Mécanique, 338(5), 290-303.

Belkhatir, M., Schanz, T., Arab, A., & Della, N. (2014). Experimental study on the pore water pressure generation characteristics of saturated silty sands. Arabian Journal for Science and Engineering, 39, 6055-6067.

Benessalah, I., Arab, A., Villard, P., Sadek, M., and Kadri, A. (2016). Laboratory study on shear strength behaviour of reinforced sandy soil: effect of glass-fibre content and other parameters. Arabian Journal for Science and Engineering, Vol. 41, pp. 1343–1353. DOI: 10.1007/s13369-015-1912-6.

Benziane, M. M., Della, N., Denine, S., Sert, S., and Nouri, S. (2019). Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil. Studia Geotechnica et Mechanica, Vol. 41, Issue 3, pp. 151–159. DOI: 10.2478/sgem-2019-0014.

Benziane, M. M., Della, N., Sert, S., Denine, S., Nouri, S., Bol, E., and Elroul, A. B. (2022). Shear behaviour of sandy soil from Chlef river reinforced with different types of fibres. Marine Georesources & Geotechnology, Vol. 40, Issue 10, pp. 1232–1241. DOI: 10.1080/1064119X.2021.1984619.

Bouaricha, L., Henni, A. D., and Lancelot, L. (2017). A laboratory investigation on shear strength behavior of sandy soil: effect of glass fiber and clinker residue content. Studia Geotechnica et Mechanica, Vol. 39, Issue 4, pp. 3–15. DOI: 10.1515/sgem-2017-0032.

Chen, C. W. and Loehr, J. E. (2008). Undrained and drained triaxial tests of fiber-reinforced sand. In: Li, G., Chen, Y., and Tang, X. (eds.). Geosynthetics in Civil and Environmental Engineering. Berlin, Heidelberg: Springer, pp. 114–120. DOI: 10.1007/978-3-540-69313-0_25.

Consoli, N. C., Heineck, K. S., Casagrande, M. D. T., & Coop, M. R. (2007). Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, Issue 11, pp. 1466–1469. DOI: 10.1061/(ASCE)1090-0241(2007)133:11(1466).

Consoli, N. C., Montardo, J. P., Donato, M., and Prietto, P. D. (2004). Effect of material properties on the behaviour of sand—cement—fibre composites. Proceedings of the Institution of Civil Engineers - Ground Improvement, Vol. 8, Issue 2, pp. 77–90. DOI: 10.1680/grim.2004.8.2.77.

Consoli, N. C., Prietto, P. D. M., and Ulbrich, L. A. (1998). Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, Issue 12, pp. 1211–1214. DOI: 10.1061/(ASCE)1090-0241(1998)124:12(1211).

Della, N., Arab, A., and Belkhatir, M. (2011). A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern Algeria. Arabian Journal of Geosciences, Vol. 4, Issue 5–6, pp. 983–991. DOI: 10.1007/s12517-010-0178-2.

Della, N., Belkhatir, M., Arab, A., Canou, J., and Dupla, J.-C. (2014). Effect of fabric method on instability behavior of granular material. Acta Mechanica, Vol. 225, Issue 7, pp. 2043–2057. DOI: 10.1007/s00707-013-1083-z.

Derradji, M., Wang, J., and Liu, W. (2018). Fiber-reinforced phthalonitrile composites. Phthalonitrile Resins and Composites, pp. 241–294. DOI: 10.1016/B978-0-12-812966-1.00005-6.

Diambra, A., Ibraim, E., Wood, D. M., and Russell, A. R. (2010). Fibre reinforced sands: Experiments and modelling. Geotextiles and Geomembranes, Vol. 28, Issue 3, pp. 238–250. DOI: 10.1016/j.geotexmem.2009.09.010.

Durville, J. L. and Meneroud, J. P. (1982). Phenomenes geomorphologiques induits par le seisme d'El Asnam, Algerie - comparaison avec le seisme de Campanie, Italie. Bull Liaison Lab Ponts Chauss, Issue 120, pp. 13–23.

Gray, D. H., & Al-Refeai, T. (1986). Behavior of fabric-versus fiber-reinforced sand. Journal of Geotechnical Engineering, Vol. 112, Issue 8, pp. 804–820. DOI: 10.1061/(ASCE)0733-9410(1986)112:8(804).

Han, J. (2015). Principles and practice of ground improvement. Hoboken: John Wiley & Sons, 432 p.

Khebizi, W., Della, N., Denine, S., Canou, J., and Dupla, J.-C. (2019). Undrained behaviour of polypropylene fibre reinforced sandy soil under monotonic loading. Geomechanics and Geoengineering, Vol. 14, Issue 1, pp. 30–40. DOI: 10.1080/17486025.2018.1508855.

Michalowski, R. L. and Čermák, J. (2003). Triaxial compression of sand reinforced with fibers. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, Issue 2, pp. 125–136. DOI: /10.1061/(ASCE)1090-0241(2003)129:2(125).

Missoum Benziane, M., Della, N., Bedr, S., Flitti, A., Kaddour Djebbar, M., and Baizid, M. (2022). Mechanical behavior of bio-cemented silty sand. Arabian Journal of Geosciences, Vol. 15, Issue 7, 577. DOI: 10.1007/s12517-022-09776-y.

Monkul, M. M. and Ozden, G. (2007). Compressional behavior of clayey sand and transition fines content. Engineering Geology, Vol. 89, Issues 3–4, pp. 195–205. DOI: 10.1016/j.enggeo.2006.10.001.

Rabab’ah, S., Al Hattamleh, O., Aldeeky, H., and Alfoul, B. A. (2021). Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications. Case Studies in Construction Materials, Vol. 14, e00485. DOI: 10.1016/j.cscm.2020.e00485.

Romero, R. J. (2003). Development of a constitutive model for fiber-reinforced soils. DSc Thesis.

Safdar, M., Newson, T., Schmidt, C., Sato, K., Fujikawa, T., and Shah, F. (2020). Effect of fiber and cement additives on the small-strain stiffness behavior of Toyoura sand. Sustainability, Vol. 12, Issue 24, 10468. DOI: 10.3390/su122410468.

Tang, C., Shi, B., Gao, W., Chen, F., and Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, Vol. 25, Issue 3, pp. 194–202. DOI: 10.1016/j.geotexmem.2006.11.002.

Wei, L., Chai, S. X., Zhang, H. Y., and Shi, Q. (2018). Mechanical properties of soil reinforced with both lime and four kinds of fiber. Construction and Building Materials, Vol. 172, pp. 300–308. DOI: 10.1016/j.conbuildmat.2018.03.248.

Yamamuro, J. A. and Lade, P. V. (1997). Static liquefaction of very loose sands. Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 905–917. DOI: 10.1139/t97-057.


Refbacks

  • There are currently no refbacks.




     

ISSN: 2500-0055