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IRH is a key parameter influencing the 
microstructure and durability of cement-based 
materials. Understanding the relationship between 
IRH and autogenous shrinkage is important for 
the design and performance evaluation of these 
materials. The evolution of degree of hydration, which 
is influenced by factors such as cement composition, 
curing conditions, and environmental exposure, 
affects both IRH and autogenous shrinkage. In this 
context, several models (Bažant and Prasannan, 
1989; Bentz et al., 1994; Eguchi and Teranishi, 
2005; Haecker et al., 2005; Hua et al., 1995, 1997; 
Koenders and van Breugel, 1997; Lura et al., 2003; 
Mabrouk et al., 2004; Neubauer et al., 1996; Paulini, 
1994; Shimomura and Maekawa, 1997; Ulm et al., 
2004; Xi and Jennings, 1997) have been proposed 
to predict the variation of autogenous shrinkage over 
time. However, the majority of these models do not 
account for the evolution of hydration degree, which 
limits their accuracy and applicability. Additionally, 
there are models predicting other properties such 
as IRH, Young’s modulus, and temperature, all of 
which are in direct relationship with the progression 
of hydration degree.

The main goal of this study was to develop 
a comprehensive calculation method for early 
autogenous shrinkage in construction materials. To 
achieve this goal, we took into account the variation 
of IRH as a crucial factor in the shrinkage process. 
In a second step, we analyzed decline curves to 
model IRH. Furthermore, we validated the proposed 
model using experimental data from the literature 

Introduction
Autogenous shrinkage refers to the chemical 

shrinkage due to Le Chatelier contraction derived 
by the difference in density between hydration 
products and reactants (Davis, 1940); generally, 
it is a phenomenon caused by three parameters: 
depression capillary, superficial tension, and 
disjoining pressure (Mounanga, 2004).

A decrease in w/c ratio leads to an increase in 
autogenous shrinkage; this is due to the spacing 
between the particles. A low value of the radius 
of the meniscus generates a difficult circulation of 
water (capillary depression) which creates stresses 
in the matrix leading to its contraction.

Due to its complex composition, there are 
difficulties with modeling the shrinkage of cement 
paste. The researchers work on two types of models: 
macro (or phenomenological) and micromechanical 
models. Both have limitations because they do 
not take into consideration that cement paste is a 
porous medium, and fail to take into account time-
dependent properties. In addition, identifying the 
model parameters for most of these models is rather 
complicated as well (Mounanga, 2004).

Internal relative humidity (IRH) plays a role in 
the development of capillary depression. During 
the progression of hydration, the reduction of IRH 
generates capillary tension in the interstitial water, 
then a modification of the radius of the capillaries 
to balance compressive stress in the solid skeleton; 
compressive stresses are accompanied by 
deformations (van Breugel, 2001).
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Abstract
Introduction: This study focuses on autogenous shrinkage in cement pastes and presents a novel calculation method 
considering variations in internal relative humidity (IRH). IRH significantly influences autogenous shrinkage, and its 
evolution is modeled based on decline curves. The proposed method accurately evaluates autogenous shrinkage and 
aligns well with experimental data. Additionally, we calculate capillary depression and meniscus radius using the Laplace–
Kelvin equation. Methods: To address early autogenous shrinkage in construction materials, we developed our calculation 
method, emphasizing IRH variation. We analyzed decline curves to model IRH and validated our model using literature-
based experimental data. Results: Our validated model for predicting IRH and autogenous shrinkage in Portland cement 
pastes, based on cement paste hydration degree, water-to-cement ratio (w/c), and the critical degree of hydration (αcr), 
closely aligns with experimental data and existing models. 
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At younger ages, deformation mechanism by 
capillary depression is dominant due to high internal 
relative humidity; stress σ in this case is given by the 
Laplace–Kelvin equation:

�
�

� � � � �2

r
RT
Vm

� Ln IRH ,                 (4)

where σ is the capillary depression (Pa), R is the 
universal gas constant [8.314 J/(mol K)], T is the 
internal temperature in (K), Vm is the molar volume 
of water [18.02 10–6 m3/mol], and IRH is the internal 
relative humidity (with values between 0 and 1), γ is 
the superficial tension (N/m) and r is the meniscus 
radius (m). 

By bringing Eq. 4 into Eq. 3, we can deduce the 
equation of autogenous shrinkage:

�
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The unknowns in this equation are IRH, E, ν and T. 
There are several models proposed in literature to 
calculate these variables. For example, L. Stefan 
et al. (2010) proposed an equation to predict the 
evolution of E as a function of hydration degree 
(Eq. 6); other authors considered the relationship 
between adiabatic temperature and degree of 
hydration (Cervera et al., 1999) (Eq. 7):
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where β = w/c is a material parameter, α∞ = 0.75 
(Cervera et al., 1999) and α0 = 0.2.

�
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T Tad

0

,                         (7)

where T ad∞  = 80°C and T0 = 20°C.
In the upcoming section, we will present a model 

that predicts the IRH variable, which is the primary 
cause of autogenous deformations in Portland 
cement pastes. This model is a function of the degree 
of hydration developed and validated using the 

and compared its performance with that of other 
models. The paper is organized as follows. Section 2 
describes the method used to calculate autogenous 
shrinkage. Section 3 presents the proposed model 
for predicting IRH. Section 4 presents the validation 
results of the proposed model and calculation method 
and compares their performance with that of other 
models. Section 5 presents a discussion. Finally, 
Section 6 summarizes the conclusions of the study.

Calculation of Autogenous Shrinkage
Let us consider a small piece of material located 

in the full mass of the paste of cement subjected to 
compressive stress generated by the depression of 
the water in the capillaries (Fig. 1). The interstitial 
fluid in depression exerts a pressure on the element 
in question so that the element is subjected to 
a uniform triaxial stress (Fig. 2).

We can write the volume change ε as:

� � � �� � � �
�V
V x y z .                     (1)

By applying this equation to a differential element 
of volume and then integrating it, we can obtain the 
change in volume of a body even when the normal 
strains vary throughout the body.

By Hooke’s law in mechanics of materials, the 
element is subjected to triaxial stress (beer et al, 
2012):

�
�
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�
� �� �1 2

E x y z .                  (2)

In the case of uniaxial stress (prismatic specimen 
in compression), Eq. 2 is simplified to:

�
�
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V E

1 2
,                      (3)

where ν is Poisson’s ratio and E is the elastic 
modulus of cement paste.

The determination of the deformation (ε) requires 
the knowledge of stress (σ), which is the value of 
the constraint generated by capillary depression. 

Fig. 1. Cement paste subjected to capillary depression Fig. 2. Element in triaxial stress
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the initially larger spacing between cement particles 
(larger pore radius) (Bentz and Aïtcin, 2008), and 
is demonstrated mathematically by the Laplace– 
Kelvin relation.

As shown in Fig. 3, the variation of IRH with the 
progression of hydration degree is influenced by the 
w/c ratio. The evolution of IRH with the degree of 
hydration exhibits a critical point where a decrease 
begins; we call it the critical degree of hydration (αcr).

The critical degree of hydration (αcr) corresponds 
to the maximum value of the degree of hydration at 
which the decrease of IRH begins. It varies linearly 
between different ratios, as shown in Fig. 4, and can 
be determined through experimental tests.

In Fig. 5, we observe a simplified representation 
of the variation of IRH with the ratio f, where f 
(abscissa) is divided into two parts – negative and 
positive. The first part corresponds to the initial 
stages of hydration when the cement matrix is in a 
saturated state, while the second part exhibits an 
almost linear decrease in IRH with the degree of 
hydration, indicating the consummation of combined 
water with the progression of hydration reactions. 
To predict the IRH variation with f, we employ the 
classical analysis of decline curves (Arps, 1945).

The loss ratios are represented by an arithmetic 
series (Fig. 6), where the difference between 
successive loss ratios is the hyperbolic exponent 
n, which is approximately constant. Using this 
information, we can establish the following differential 
equation:

d
d df
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n

IRH
IRH� �

�
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�
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��
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/
.                  (13)

Integration of Eq. 13 gives:

IRH

IRHd df
nf a

� �
� � �

/
.0                 (14)

The constant loss ratio at f = 0 is denoted by a0. 
We can simplify the above equation as follows:

data from previous studies. To accomplish this, we 
connect all variables in Eq. 5 to a single parameter, 
the degree of hydration (α), which we calculate using 
the three-parameter model (TPM) (Schindler and 
Folliard, 2005):
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where τ and β’ are parameters of the model, αu is the 
ultimate degree of hydration and a function of w/c 
ratio, with the following equations:
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where P is the weight ratio in terms of total cement 
content.

The equivalent age can be defined as the same 
level of maturity of cement (mechanical properties 
and degree of hydration) acquired by specimens 
of the same composition but under different 
temperature history. Using the Arrhenius Law, we 
obtain (Hansen and Pedersen, 1977):
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where Ea is the activation energy, T(τ) is the 
temperature history, and Tref is the reference 
temperature generally equal to 20°C, R is the 
universal gas constant; the ratio Ea/R = 4000 for 
T ≥ 20°C for Portland cement (RILEM TC 119-TCE, 
1997).

Modeling of Internal Relative Humidity
From the research of Bentz et al.(2004), we can 

deduce that the fineness of cement has no significant 
influence on the IRH–α relation. An IRH reduction 
is less in the systems with higher w/c ratio, due to 
low values of capillary depression. This is due to 

Fig. 3. Relation between IRH and degree of hydration 
(experimental data from Wyrzykowski and Lura (2013))
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To eliminate the constants of integration from 
the previous second-order differential equation, we 
assume that IRH is equal to IRH0, which is 100% 
for f = 0. This results in the following relationship 
between IRH and f:

IRH IRH� �
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.               (16)

We pose: n
a

k
0

� � .

Table 1. Values of the IRH model parameters
References w/c αcr αu –K –n

Wyrzykowski and Lura, 2013 0.22 0.28 0.5479 1.997 8.938
0.25 0.325 0.5805 2.13 10.65
0.3 0.4 0.626 2.696 16.85

0.35 0.475 0.663 6.14 18.49
Huang and Ye, 2016 0.25 0.31 0.5805 2.41 9.44

Lu et al., 2020 0.3 0.38 0.626 2.47 10.7
0.4 0.52 0.69427 1.95 9.92

Huang and Ye, 2016 0.25 0.1 0.5805 1.19 12.63
Wei et al., 2015 0.3 0.2 0.626 1.495 15.8

Wyrzykowski and Lura, 2013 0.35 0.3 0.663 1.986 34.35
Kumarappa et al., 2018 0.4 0.4 0.694 2.68 63.395

Fig. 5. Evolution of IRH with f ( f cr

u
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The equation to predict the variation of IRH with 
α can be expressed as follows:
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where n and k are parameters of the model that can 
be determined with regression from experiments as 
a function of w/c ratio and cement composition (C3S 
and C3A contribute most to heat release at early 
ages).

Validation 
The free method for measuring autogenous 

shrinkage of cement pastes involves the preparation 
of unrestrained specimens, typically prismatic or 
cylindrical in shape. These specimens are allowed 
to undergo natural shrinkage without any external 
restraints, and their dimensional changes over 
time are measured. Various techniques such as 
linear displacement sensors, dilatometers, or image 
analysis can be employed to accurately monitor 
the specimen’s length or volume. By analyzing the 
collected data, the autogenous shrinkage behavior 
of cement paste can be evaluated, providing insights 
into the material’s intrinsic characteristics. The free 
shrinkage method offers a direct measurement of the 
unrestrained behavior of cement pastes, allowing for 
a better understanding of their volume changes and 
potential cracking risks.

To validate the proposed IRH model, we used 
the calculated degree of hydration values (obtained 
using Eq. 8) of the cements reported in literature 
(Huangand Ye, 2016; Kumarappa et al., 2018; Lu et 
al., 2020; Wei et al., 2015; Wyrzykowski and Lura, 
2013). Subsequently, we used the last proposed 
method to calculate autogenous shrinkage for 
the experiments conducted in the work of Song et 
al. (2020). Table 1 presents the parameters of the 
proposed IRH model for various cement pastes.

Fig. 7 depicts the predicted values of the proposed 
IRH model with an overlay on experimental data from 
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In Figs. 8 to 11, we present the validation results 
of our proposed model using data from previous 
studies (Huang and Ye, 2016; Kumarappa et al., 
2018; Wei et al., 2015; Wyrzykowski and Lura, 
2013). Additionally, we compare the performance of 
our model with that of two other models in literature, 
namely the Song model (Song et al., 2020) and the 
Shen model (Shen et al., 2018).

Upon examining the figures (Figs. 8–11), 
it is evident that the proposed model exhibits an 
excellent agreement with the measured data, thus 
establishing its reliability in predicting the behavior 
of IRH. Moreover, a comparative analysis with two 
other models (Song (Song et al., 2020) and Shen 
(Shen et al., 2018)) demonstrated that the proposed 
model’s performance was comparable to these 
existing models. This validation process offers robust 
evidence of the accuracy of the proposed model in 
predicting IRH.

For the 11 mixtures (Table 1) found in literature, 
we suggest the following equations of the parameters 
of the proposed IRH model:

literature (Huang and Ye, 2016; Lu et al., 2020). The 
results show a strong agreement between the model 
predictions and the experimental tests, indicating the 
effectiveness of the proposed model in predicting 
the variation of IRH with α. This validates the use 
of the model for further analysis and predictions in 
similar experiments.

Fig. 8. Measured and calculated IRH for w/c = 0.25 
(experimental data from Huang and Ye (2016))

Fig. 9. Measured and calculated IRH for w/c = 0.3 (experimental 
data from Wei et al. (2015))

Fig. 10. Measured and calculated IRH for w/c = 0.35 
(experimental data fromWyrzykowski and Lura (2013))

Fig. 11. Measured and calculated IRH for w/c = 0.4 
(experimental data fromKumarappa et al. (2018))
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Fig. 7. Measured and calculated IRH (experimental data from 
Huang and Ye (2016), Lu et al. (2020))
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The observed small p-values (0.01) indicate 
significant relationships between the independent 
variables and the IRH parameters. The F-test shows 
improved prediction accuracy with each additional 
variable.

The following tables (Tables 2–5) present the 
calculated values of IRH and autogenous shrinkage 
along with their corresponding parameters. The 
results are then compared to the experimental data 
from Song et al. (2020).

Upon examining the tables (Tables 2–5), we 
can conclude that the autogenous shrinkage values 
obtained from the proposed model are in very good 
agreement with the experimental results from Song et 
al. (2020). Additionally, the calculated values of capillary 
depression are consistent with the values reported in 
literature (Lu et al., 2020; Song et al., 2020).

Discussion 
The proposed model for predicting the internal 

relative humidity (IRH) and autogenous shrinkage of 
Portland cement pastes was validated using the data 
from previous studies. The model is based on the 
degree of hydration of the cement paste and takes 
into account the water-to-cement ratio (w/c) and the 
critical degree of hydration (αcr) at which IRH starts 
to decrease. The validation results show that the 
proposed model fits very well with the experimental 
data and is comparable with other models in 
literature. The calculated values of autogenous 
shrinkage and capillary depression are also close to 
the experiments and literature values, respectively.

Table 2. The case of w/c = 0.25
Age 
(h) α IRH (calculated) E (GPa) ν (Stefan et 

al., 2010) T (K) σ (MPa)
(calculated)

ε (μm/m) 
(calculated)

ε (μm/m) 
(measured)

0 0 100 0 0.4 273.15 0 0 0
10.5 0.25 98 19 0.235 293.12 2.73 73 100
21 0.39 93 26 0.225 304.41 10.19 202 200
42 0.48 88 29 0.225 311.73 18.39 330 300
84 0.53 85 30 0.22 315.72 23.67 415 400

Table 3. The case of w/c = 0.3
Age 
(h) α IRH (calculated) E (GPa) ν (Stefan et 

al., 2010) T (K) σ (MPa)
(calculated)

ε (μm/m) 
(calculated)

ε (μm/m) 
(measured)

0 0 100 0 0.4 273.15 0 0 0
10.5 0.2 99.93 13 0.265 289.15 0.13 3 75
21 0.4 96 23 0.235 305.15 5.75 133 150
42 0.51 93 26 0.23 313.95 10.51 217 230
84 0.55 90 27 0.225 317.15 15.42 313 300

Table 4. The case of w/c = 0.35
Age 
(h) α IRH (calculated) E (GPa) ν (Stefan et 

al., 2010) T (K) σ (MPa)
(calculated)

ε (μm/m) 
(calculated)

ε (μm/m) 
(measured)

0 0 100 0 0.4 273.15 0 0 0
10.5 0.2 100 7 0.28 289.15 0.09 6 5
21 0.4 99 14 0.25 305.15 1.41 50 75
42 0.51 97 16 0.24 313.95 4.41 140 150
84 0.58 95 18 0.234 319.55 7.56 229 230

Table 5. The case of w/c = 0.4
Age 
(h) α IRH (calculated) E (GPa) ν (Stefan et 

al., 2010) T (K) σ (MPa)
(calculated)

ε (μm/m) 
(calculated)

ε (μm/m) 
(measured)

0 0 100 0 0.4 273.15 0 0 0
10.5 0.27 100 6 0.33 294.37 0.002 11 25
21 0.43 99.5 10 0.275 307.47 0.71 45 60
42 0.55 99 12 0.25 316.80 1.47 88 90
84 0.62 98 13 0.24 322.38 3.01 159 150
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Conclusion
In conclusion, this study proposes a model for 

predicting the variation of internal relative humidity 
(IRH) with the progression of hydration in cement 
pastes. The proposed model was validated using 
the data from previous studies and showed good 
agreement with the experimental results.

Moreover, the study shows that there is a direct 
relationship between the decrease in IRH and the 
increase in autogenous shrinkage. This finding is 
important for the design of concrete structures, as 
it highlights the importance of controlling internal 
humidity in order to avoid excessive autogenous 
shrinkage.
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Аннотация
Введение: Данное исследование посвящено исследованию процессов развития аутогенной усадки цементных 
паст и представляет новый метод расчета, учитывающий изменения внутренней относительной влажности. 
Внутренняя относительная влажность существенно влияет на аутогенную усадку, и ее эволюция моделируется 
на основе кривых снижения. Предложенный метод точно оценивает аутогенную усадку и хорошо согласуется с 
экспериментальными данными. Кроме того, по уравнению Лапласа-Кельвина были рассчитаны капиллярная 
депрессия и радиус мениска. Методы: Чтобы предотвратить развитие ранней аутогенной усадки строительных 
материалов, был разработан новый метод расчета, который учитывает изменение внутренней относительной 
влажности. Проанализированы кривые снижения, использованные для моделирования изменения внутренней 
относительной влажности, и подтверждена достоверность новой модели на основе анализа эмпирических 
данных, представленных в других исследованиях. Результаты: Новая модель прогнозирования изменения 
внутренней относительной влажности и аутогенной усадки в портландцементных пастах, основанная на степени 
гидратации цемента, соотношении воды и цемента (в/ц) и критической степени гидратации (αcr), согласуется с 
экспериментальными данными и существующими моделями. Это исследование подчеркивает важность контроля 
внутренней влажности для уменьшения аутогенной усадки в бетонных конструкциях. 

Ключевые слова: цементное тесто, аутогенная усадка, внутренняя относительная влажность, прогнозирование, 
моделирование, кривые снижения.


