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Abstract
Introduction: In this paper, based on the properties of unit functions, we present accurate solutions to beam bending 
under various transverse loads and edge restraint conditions, using equations based on Bernoulli’s hypothesis and 
the hypothesis taking into account transverse shears. By comparing the analytical solutions obtained for a rectangular 
beam, we determined beam length-to height (L/h) ratios for cases when the difference in deflections is less than 
the permitted value. Thus, criteria for Bernoulli’s hypothesis application were obtained. The results of beam bending 
analysis can be applied when studying rod systems using the force and displacement methods. In this case, Bernoulli’s 
hypothesis is used. All the ratios obtained are simple and clear. However, this hypothesis is applicable for the 
analysis of thin-walled structures. Meanwhile, the hypothesis taking into account transverse shears can be used for 
structures of medium cross-section height. To ensure accurate results when studying building structures (beams, 
plates, shells, rod systems), the criterion of Bernoulli’s hypothesis (hypothesis of the straight normal) applicability 
was needed. Purpose of the study: We aimed to build a mathematical deformation model and develop a method 
for the analysis of bending in elastic Timoshenko beams with account for transverse shears. Methods: By applying 
generalized functions and direct integration of the differential equation for the bending line, we obtained analytical 
expressions for the deflection function under various boundary conditions. Results: Based on the proposed method, 
we performed beam analysis under various transverse loads and edge restraint conditions. We also evaluated the 
scope of Bernoulli’s hypothesis application for the main types of beams used in the analysis of rod systems by the  
displacement method.
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Introduction
Latest advances in construction science show that 

a balanced combination of materials in a structure 
makes it possible to utilize their benefits to the 
maximum extent. Due to the widespread use of new 
structural materials ensuring structural efficiency, 
it is required to apply analytical models that would 
fairly represent the stress-strain state of structural 
elements in buildings and structures (Zveryayev, 
2003). Many researchers explored how to build 
one-dimensional and two-dimensional approximate 
analytical models based on three-dimensional 
equations of elasticity theory (Donnell, 1982; 
Goldenweiser, 1976; Maslennikov, 2009; Nazarov, 
2002; Tovstik, 2007; Zveryayev and Makarov, 2008).

To ensure a balanced combination of material 
properties, we need to make sure that such a 
combination is appropriate and provides the required 
load-bearing capacity of the structure while reducing 

its weight and manufacturing complexity, optimizing 
the construction period and operating expenses, 
thereby improving the performance of investment 
in construction, and justify that with analysis and 
calculations.

The widespread use of modern software systems 
for structural analysis in construction necessitates 
their verification to determine the reasonable level 
of detail with regard to the analyzed analytical model 
and the required accuracy of calculations (ANSYS, 
2009; Simulia, 2012: SOFiSTiK AG, 2014). Thus, it 
is required to obtain accurate solutions for typical 
problems related to the analysis of new building 
structure types in order to use analytical solutions 
(Karpov et al., 2021) for verification of various 
software systems.

S. P. Timoshenko (Timoshenko, 1945; 
Timoshenko and Woinowsky-Krieger, 1963) is 
rightfully considered the author of the refined theory 
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considering transverse shear in the analysis of 
beams, plates, and shells. He proposed an analytical 
model that takes into account bending and shear 
deformations and, thus, can be used to describe the 
behavior of beams of medium thickness as well as 
sandwich panels, and the high-frequency vibrations 
of beams when the wavelength becomes comparable 
to the cross-section height. In this case, the shear 
coefficient depends on Poisson’s ratio. Numerous 
researchers attempted to obtain an exact expression 
for it (Cowper, 1966; Hutchinson, 1981; Stephen, 
1980).

In engineering practice, the Timoshenko model 
(Timoshenko and Gere, 1976) is sufficient in most 
analysis cases. Based on the results of experimental 
studies conducted later, it was shown that, in the 
analysis of many building structures, the shear 
coefficient is underestimated (Franco-Villafañe and 
Méndez-Sánchez, 2016; Méndez-Sáchez et al., 
2005).

Yeliseyeva et al. (2011) studied the application of 
the Timoshenko model in beam deflection analysis 
with account for bending and shear deformations. 
They showed that the resolving equation in the 
problem of accounting for additional shear in beam 
bending has terms with different physical meaning, 
which introduces particular aspects when boundary 
conditions are considered.

Lalin and Beliaev (2015) solved the problem 
of bending of a geometrically nonlinear cantilever 
beam, using the Kirchhoff and Cosserat–Timoshenko 
theories followed by a comparison of the results 
obtained. In their opinion, the findings can be used 
for verification of various software systems.

When classic beam bending problems are 
considered, Bernoulli’s hypothesis is mainly applied. 
However, this hypothesis is not valid for, e.g., 
composite beams. The degree of approximation is 
mainly determined by the ratio between the cross-
section height and the length of the beam as well as 
physical characteristics and structure of the material 
(Pavlenko and Vereshchaka, 2002). Rossikhin and 
Shitikova (2010) provided an analytical review of 
Timoshenko-type theories in respect to thin-walled 
open-section beams and concluded that currently 
there are no theories that would describe the beams 
under consideration and fully meet the requirements 
of engineering practice (analysis) and experimental 
data.

By using Bernoulli’s hypothesis, Karpov et al. 
(2021) presented a method to find an accurate 
solution to the beam bending equation for a beam of 
uniform cross-section height, subjected to different 
types of transverse load (distributed along the entire 
length of the beam, distributed along a part of the 
beam, concentrated force, or a moment of a couple 
of forces), with different types of beam end restraint. 
An analytical solution for a beam can also be 

obtained by using the hypothesis taking into account 
transverse shears. By comparing these solutions, 
it is possible to determine criteria for Bernoulli’s 
hypothesis application in beam analysis.

The equation for the equilibrium of a beam with 
length L and cross-section height h, subjected to 
the load q, when Bernoulli’s hypothesis is used, is 
as follows:
  (1)

where J = h3/12 — the moment of section inertia, 
w(x) — the beam deflection, q(x) — the load (MPa).

If we apply the hypothesis taking into account 
transverse shears (Timoshenko model), then the 
equations for the equilibrium of such a beam will be 
as follows:

 
dQ
dx

q dM
dx

Qx x
x0 0,  (2)

where ,x x
dwQ Gh
dx

ψ = + 
 

 x
x

dM EJ
dx
ψ

= . 

Here xψ  — the function taking into account 
transverse shears.

The method of solving Eq. (1) described by 
Karpov et al. (2021) can also be applied to solve 
system (2).

Direct integration of the differential equation 
for the bending line

Let us find a general solution of system (2) by 
direct integration of the differential equation for 
the bending line under different types of loads and 
boundary conditions. We will consider a case when 
the load q is uniformly distributed along the entire 
length of the beam. Let the beam be rigidly fixed 
at x = 0 and unrestrained at x = L. In this case, the 
following conditions must be fulfilled:

at x = 0, w = 0, and 0xψ = ;

at x = L, Mx = 0 0xd
dx
ψ = 

 
 and 

2

20 0 .x
x

dQ
dx
ψ 

= = 
 

Based on the second equation of system (2), we 
obtain the following:

Q dM
dx

EJ d
dx

dQ
dx

EJ d
dxx

x x x x
2

2

3

3 .

By substituting the obtained expressions into the 
first equation of system (2), we obtain the following: 

                               or     
                                                      

Differential equation (4) represents an equation 
with separable variables. By integrating this 
differential equation successively, we get the 
following:

EJw qIV = ,

(3)

(4)
3

3
xdEJ q

dx
ψ

= −
3

3 .xd q
dx EJ
ψ

= −



 

39

 

Vladimir Karpov, Evgeny Kobelev, Aleksandr Maslennikov — Pages 37–43
EVALUATING THE APPLICABILITY OF BERNOULLI’S HYPOTHESIS IN BEAM ANALYSIS

(5)

By using boundary conditions (3), we find the 
following arbitrary constants:

2

3 1 20,  , .
2

qL qLC C C
EJ EJ

= = = −

To find w(x), let us use the following expression:

Q Gh dw
dx

dM
dx

EJ d
dxx x

x x� ��
�
�

�
�
� � ��

�2
2
;

i.e.,

Gh dw
dx

EJ q
EJ
x qL
EJx� ��

�
�

�
�
� � � ��

�
�

�
�
�.

Hence, given that G = E/3, we obtain the 
following:

 

dw
dx

Eh
E
d
dx

x
x

2 2

2

3

12

By integrating this relation, we get the following:
  

(6)

By using the boundary conditions at x = 0, w = 0, 
we find b1:

  
b q

EJ
L h

1

2 2

8
� � .

 
Thus, the function w(x) will take the following 

form:

(7)

If transverse shears are not considered (Kirchhoff 
model), then w(x) will be as follows:

 
w x q

EJ
x L x L x� � � � �

�

�
�

�

�
�

4

3

2

2

24 6 4
.

 
Therefore, since in this case transverse shears 

are considered, deflection (7) changed by ∆:

 

 

( )22 2 2

.
4 2 8

L xq h L h
EJ

 −
= − 

  


 
The maximum deflection will be at x = L, i.e.:

max
q
EJ
L h2 2

8
.

To apply Bernoulli’s hypothesis in this case,  
∆max must be small (NMT 5% of the permitted 
deflection wperm). Based on this condition, we can 
find an estimate for the L/h ratio. For instance, 
for a rectangular concrete beam (E = 3•104MPa,  
wperm =0.0057h, at q = 2•10-2МPа, we have 

2 2

0.05 0.0057
8

q L h h
EJ

= 
, hence, we can find 

L=16h. Thus, if h>L/16, then we need to use the 
model taking into account transverse shears. Based 
on the condition wmax≤ wperm, we obtain L=30h. 

In the example considered, at L=10m, the 
permitted height of the beam h (when Bernoulli’s 
hypothesis is applied) shall not exceed 0.625 m, and 
based on the condition wmax≤ wperm , the beam height 
turned out to be 0.33 m. If we need to increase the 
beam height based on the condition of structural 
integrity, then it can be increased by 0.295 m. In this 
case, the hypothesis of the straight normal remains 
valid.

For a rectangular metal beam (E = 2.1•105MPa, 
wperm =0.01h, at q = 2•10-2MPa, L = 60h. At 
L = 10 m, h = ≤0.16 m, so that the beam bending 
equation with the use of Bernoulli’s hypothesis could 
be applied in beam analysis.

Let us assume that the ends of the beam 
subjected to a load that is uniformly distributed along 
the entire length of the beam have a hinged support. 
In this case, at x = 0 and x = L, the following 
conditions must be fulfilled:
  

(8)

By using these boundary conditions, we will find 
arbitrary constants (except for C3) and obtain the 
following:

 
( )

3 2

36
.

2 2x
q x qL xx C

EJ EJ
ψ = − + +

 

Based on 
2

2
x

x
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, 

we will find w(x). In this case:

3 2 2

3 .
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By integrating this relation, we get the following:

( )
( )

4
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.
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2
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x L EJx C x
qqw x b

EJ Lxh
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By using boundary conditions (8), we will find C3 
and b1. Thus, w(x) will take the following form:
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If transverse shears are not considered, then the 

deflection function will be as follows:

 
w x q

EJ
x L x L x� � � � �

�

�
�

�

�
�

4

3

3

24 12 24
.

Therefore, since in this case transverse shears 
are considered, the deflection changed by ∆:

 

q
EJ
h L x

x L L2

2

2

4 8

2

2 8
.

Since the maximum deflection will be at 

2
Lx = , then 

29
16

qL
Eh

 must be small. In case of  
 
a concrete beam, we have the following ratio: . 

 

Therefore, to apply Bernoulli’s hypothesis in beam 
analysis, the following condition must be fulfilled: 
h<L/27. If h>L/27 , then we need to use the model 
taking into account transverse shears. For a concrete 
beam, at L = 10 m, the cross-section height h shall 
not exceed 0.37 m.

For a metal beam, L/h = 95, therefore, if  h>L/95, 
then we need to use the model taking into account 
transverse shears. For instance, at L = 10 m, the 
beam cross-section height h shall not exceed 
0.105 m.

In the same way, we can analyze Bernoulli’s 
hypothesis applicability for beam analysis in case of 
other types of loads and beam end restraint.

Let the load be uniformly distributed along a part 
of the beam span, i.e.:

 

( ) ( ) ( ) ( )1 1 1 1 2   ,q x q x x q u x a u x aδ  = − = − − − 

where ( )1 u x a−  and ( )2 u x a−  are unit functions.
If the beam is rigidly fixed at 0x =  and 

unrestrained at x L= , then the boundary conditions 
will take the form corresponding to that in system (3). 
In this case, Eq. (4) will take the following form: 

 
 

 
 ( ) ( )

3
1

1 23    .xd q u x a u x a
dx EJ
ψ

 = − − − −   (9)
  

By using the properties of unit functions  
 

  
 

 

and successively integrating Eq. (9), we obtain the 
following:
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By using boundary conditions (3), we will find C1, 

С2 and C3:

Based on the following condition:

we will get:

( ) ( )
( ) ( )

1 12

1 2 22

2 1

   

  ,x
x
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a a

ψψ

 − − −
 ∂ + = = − − − −  ∂   + 

29 0.05 0.0057 .
16

qL h
Eh

= 

( ) ( ) ( ) ( )
2

1
1 1 1

 
    .

2
x a

x a u x a dx u x a
−

∫ − − = −

( ) ( ) ( )1 1 1   ;u x a dx x a u x a∫ − = − −

( )

( ) ( ) ( )

1
3 1 2 1

2 2
1 21

2 2 1

0, ,

  
.

2 2

qC C a a
EJ

L a L aqC L a a
EJ

= = −

 − −
= − − − 

  

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

3 3 2
1 21

1 2 1

1 11
2

2 2 2 1

  
    

6 6 2

   
.

  

x a x aqdw xu x a u x a C
dx EJ

x a u x aqC x
Gh x a u x a a a

 − −
= − − − − − 

  
 − − −

−  
− − − +  



 

41

 

Vladimir Karpov, Evgeny Kobelev, Aleksandr Maslennikov — Pages 37–43
EVALUATING THE APPLICABILITY OF BERNOULLI’S HYPOTHESIS IN BEAM ANALYSIS

By integrating this expression, we will find the 
beam deflection function:

Based on the condition at x = 0, w = 0, we will 
get b1=0.

In order to keep the expression for w(x) as simple 
as possible, we will not substitute  C1 and C2 with the 
values obtained.

If transverse shears are not considered, then:

 

Therefore, with transverse shears considered, the 
deflection changed by ∆:

The maximum value will be at  x=L:

Based on the condition ( )2 21
1 22

3 0.05 0.0057
2

q a a
Eh

− =  , 

we will estimate the L/h ratio. Let 1 2
2, 

3 3
La a L= = , 

then 
2

1
2 0.05 0.0057.

2
q L
Eh

=  Hence, 29.L
h
=

Analysis results 
The following table presents the analysis results:

Type of beam,
with height h 
and span L

Type of load, uniformly 
distributed Beam material

Recommended L/h ratio for beam analysis

by Kirchhoff model by Timoshenko model

Cantilever

0 q L≤ ≤
Concrete 16≥ 16<

Steel 60≥ 60<
 

/ 3 2 / 3L q L≤ ≤ Concrete 29≥ 29<

Hinged support 0 q L≤ ≤
Concrete 27≥ 27<

Steel 95≥ 95<

Conclusion
When Bernoulli’s hypothesis (Kirchhoff model) 

is applied, the relations used to determine the 
components of the stress-strain state of a beam 
resisting bending under various types of transverse 
load and beam end restraint are simple and 
clear as shown above. The obtained values of 
deflections and bending moments can be used in 

the analysis of rod systems, e.g., with the use of 
the displacement method. However, to ensure that 
analytical models and solutions are accurate, we 
need to evaluate the applicability of Bernoulli’s 
hypothesis. This method makes it possible to do 
that easily. The obtained estimates for beams can 
be used approximately in the analysis of plates  
and shells.
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Аннотация
Используя свойства единичных функций, в данной статье находятся точные решения изгиба балки при 
различной поперечной нагрузке и различных условиях закрепления краев, как при использовании уравнений, 
основанных на гипотезе плоских сечений, так и на гипотезе, учитывающей поперечные сдвиги. Путем сравнения 
полученных аналитических решений для балки прямоугольного сечения находятся соотношения её длины L 
балки и ее высоты h, когда разница в прогибах меньше допустимой величины. Таким образом, получаются 
критерии использования гипотезы плоских сечений. Результаты расчета изгиба балок используются при 
исследовании стержневых систем методом сил и методом перемещений. При этом используется гипотеза 
плоских сечений. Все полученные соотношения имеют простой и наглядный вид. Однако эта гипотеза 
применима при расчете тонкостенных конструкций. А гипотеза, учитывающая поперечные сдвиги, может быть 
использована для конструкций средней высоты поперечного сечения. Для получения корректных результатов 
исследования строительных конструкций (балка, плита, оболочка, стержневая система) был необходим 
критерий применимости гипотезы плоских сечений (прямой нормали). Цель исследования: Построение 
математической модели деформирования и создание методики расчета на изгиб упругих балок типа Тимошенко 
с учетом поперечных сдвигов. Методы: На основе применения математического аппарата обобщенных 
функций методом непосредственного интегрирования дифференциального уравнения изогнутой оси балки 
получены аналитические выражения функции прогибов для различных граничных условий. Результаты: По 
предложенной методике проведены расчеты балок при действии различной поперечной нагрузки и различных 
видов закрепления концов краев балки. Выполнена оценка области применения гипотезы плоских сечений для 
основных типов балок, используемых для расчетов стержневых систем методом перемещений.  

Ключевые слова 
Балка, изгиб, модель Кирхгофа, поперечный сдвиг, модель Тимошенко, единичные функции.  


