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Abstract

Introduction: The paper addresses thin-walled three-layer plates and panels with cutouts, reinforced with an orthogonal
grid of stiffeners or rectangular reinforcement plates parallel to the coordinate lines. In this case, the thickness of the
entire structure is taken into account analytically using unit column functions. Purpose of the study: We aimed to build
a mathematical model of deformation and develop a method for the analysis of the stability of thin-walled elastic isotropic
three-layer plates and wall panels with a discrete core. Methods: Based on the mathematical apparatus of generalized
functions using the Bubnov—Galerkin method, an eigenvalue problem is solved to determine the critical parameters of
a compressed three-layer wall panel with a discrete core. Results: According to the suggested method, we perform a
stability analysis of three-layer wall panels with different values of core stiffness and study the impact of the discrete core

parameters on the buckling load, consumption of materials, and efficiency of three-layer engineering structures.
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Introduction

Currently, to improve the weight and economic
efficiency, specific strength, and stiffness of thin-
walled structures, especially in construction,
shipbuilding, mechanical engineering, and other
technical industries, three-layer plates and shells are
widely used. The heterogeneous layered structure
of such shells provides the necessary strength and
stiffness characteristics as well as soundproofing and
heat and vibration isolation properties.

The used thin-walled structure analysis
principles are common for bending flat three-layer
panels, three-layer panels resisting compression
and bending, and three-dimensional three-layer
structures — shells.

Since three-layer structures have a core (solid or
discrete, e.g., ribbed) offering relatively low resistance
to shear, the bending strains in these structures
are accompanied by mutual skin displacement. It is
possible to perform three-layer panel and shell analysis
either based on the precise methods of the elasticity
theory or through the introduction of certain hypotheses
that reflect the specifics of structure behavior and
make it possible to significantly simplify the process of
problem-solving with no considerable error.

The precise method of core element analysis
uses an equation for a three-dimensional problem of
the elasticity theory. This method was first used for
thick slabs by Galerkin (1931).

In the case of cylindrical bending, Rzhanitsyn’s
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theory of built-up columns (1986) can also be applied
effectively for the analysis of three-layer panels. In
this case, the panel skins are considered as built-up
column laminations while the core is considered as
transverse and shear connections evenly distributed
along the column length.

Three-layer panels with low section height and,
therefore, high flexibility are usually supported on
four sides or secured on supports and calculated
based on the non-linear theory with account for chain
(membrane) forces acting in the middle surface.

The analysis of stiffened three-layer panels has
a number of specific features. In three-layer wall
panels (especially if there is a solid core), stiffeners
are distributed relatively sparsely, therefore, in the
analysis, it is necessary to account for the non-
uniformity of the distribution of normal stresses in
the skins along the width of the panel, caused by
shear forces along the lines where the skins and the
stiffeners come together (Aleksandrov et al., 1960;
Davies, 2001).

The general theory of the analysis of three-
layer plates and shells with a structural core was
developed by Aleksandrov (1959), Aleksandrov
et al. (1960), Bryukker (1965), Grigolyuk and
Chulkov (1973), Grigolyuk and Kogan (1972),
Levchuk (2008a, 2008b) as well as Dragan and L
evchuk (2011).

Numerous researchers (Eremeev and Zubov,
2017; Kipiani, 2014; Kobelev et al., 1984; Kreja, 2011;
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Pukhliy and Pukhliy, 2019) dealt with the development
of new analytical models for three-layer plates and
shells. The wide implementation of new materials
that enable making structures with unique properties
in engineering and construction has significantly
complicated analytical models. Among the studies
addressing methods for the analysis of thin-walled
structures made of composite materials, we would
also like to mention publications by Kaledin et al.
(2014), Nguyen et al. (2019), and Solomonov et al.
(2014).

Currently, numerical calculations of three-layer
panels are usually performed using finite-element
modeling packages. The skins are modeled by finite
elements of the plates and the core is modeled
by solid finite elements. The creation of powerful
computing systems based on the finite element
method (FEM) opens up opportunities for the
development of new analytical models with regard to
the analysis of the stress-strain state of multi-layer
plates and shells with irregular structures (Baculin,
2018; Golovanov et al., 2006; Grishanov, 2018).
Mathematical models for the analysis of modern
thin-walled three-layer structures shall meet a lot of
requirements. Among other things, they shall allow
us to determine with high accuracy the stress-strain
state, load-bearing capacity, and critical buckling
values of such structures, taking into account the
heterogeneity of layers and a wide range of external
effects (Karpov, 2010; Karpov et al., 2002).

Despite the fact that current computational
resources make it possible to build and analyze
complex finite element models in a comparatively
short time, the very development of an analytical
model that would reliably take into account the stress-
strain state of an irregular structure requires the
involvement of a highly qualified computing engineer
and significant programming efforts. The creation of
a method for stability analysis of three-layer panels
with a discrete core, based on the mathematical
apparatus of generalized functions and variational
analysis methods, is quite an important task.

The paper builds a mathematical model and
develops an algorithm for the analysis of three-layer
wall panels with a discrete core in the form of some
inner cutouts, which is equivalent to a core in the
form of a system of wide cross stiffeners.

Mathematical model for the analysis of plates
and wall panels

The paper addresses plates and panels reinforced
with an orthogonal grid of stiffeners parallel to the
coordinate lines. The height and location of the
stiffeners are specified according to Karpov (2010)

using unit column functions S(X—xj) S(y—)’i)
as follows:
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where %, h' — the height of the stiffeners parallel to
the y and x axes, respectively; #’ = min{h’,hf} :

g(x—xj), S(y —¥;) — the unit column functions
equal to 1 at points where the stiffeners are located

or 0 outside those locations. If #/ = h/(y) h' =h'(x),

then A" =min {A'(x,); 1’ (y,)} .

Therefore, the thickness of the entire structure is
equal to h + H. If H> 0, then the plate is reinforced
with stiffeners or reinforcement plates. If H < 0, then
it is weakened by cutouts.

Let us consider a wall panel with thickness h
with a rectangular cutout reinforced with eccentric
stiffeners in the direction of the x axis.

If a slab, reinforced with stiffeners, the size and
location of which are specified by function H(x,y)
in the form of Eq. (1), also has cutout holes, the
location of which is specified by function 4, (x,y) in
the following form:

L0

Hz(xay)=—h225(x—xf2)5(y—ya )’

Jr=lip=1
then the total thickness of the slab will be
h+ H(x,y)+ H,y(x,y).

The internal forces in the panel can be
represented as follows:
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Fig. 1. Wall panel with a rectangular
cutout reinforced with stiffeners
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where expressions for the moments of inertia have
the following form:
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The equilibrium equation for the slab compressed
in the direction of the x axis will be as follows:

M. M, oM 2
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Let us consider a wall panel in the form of a three-
layer slab with a discrete core. Such a structure can
be specified according to Karpov et al. (2002) if a
slab of thickness / with internal cutouts of depth 4/3 is
considered. Let us assume that the cutouts have the
same size and are rectangular with side a, along the x
axis and side b, along the y axis. In the direction of the
x axis, there will be m, cutouts, and in the direction of
the y axis, there will be », cutouts (Fig. 2).

The reduced area of the cutouts will be equal to
the following:

a;mbyn
—b .
The moment of inertia of such a slab with the zero

stiffness of the cutouts “smeared” along the entire
plate will be equal to the following:

K1:
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Fig. 2. Wall panel with inner cutouts

where:
hl/6 3 3
J=n2,J= | A
324 12-27

—h/6
Then the moments in Eq. (2) will be as follows:
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Analysis of the efficiency of three-layer wall
panels with a discrete core

Let us study the stability of wall panels in the form
of three-layer plates with a discrete core compressed
in the direction of the OX axis with force N_uniformly
distributed along the middle plane of the slab
(N = — const). The equilibrium equation for such a slab
has the form of Eq. (2).

Let us assume that the edges of the slab have
pin support. We need to find such value of N where
deflection W(x,y) is other than 0. This value ofN will
be critical. Let us present W(x,y) in the following form:

To find the 4, coefficients according to the
Bubnov—Galerkin method we will derive a system of
homogeneous linear algebraic equations.
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Having determined the integrals of known
functions, we will obtain the following:
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As a result, we have an eigenvalue problem. We
need to find such values of N where this system has
a non-zero solution.

If small deflections are considered, the first
approximation of the Bubnov—Galerkin method can
be considered, i.e., W(x,y) can be adopted in the
following form:

W (x,y)=C, s1nna sm%

For a slab of constant thickness 4, we will obtain
the following:
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For a rectangular slab at a=b, we will obtain the
following:

by

3
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Cl

Let us consider a wall panel in the form of a three-
layer slab with a discrete core. The thickness of such
a structure can be specified if we consider a slab of
thickness /4 with inner cutouts of depth 4/3 (Fig. 3).

Let us assume that the cutouts have the same
size and are rectangular with side a,along the x axis
and side b, along the y axis. In the direction of the x
axis, there will be m, cutouts, and in the direction of
the y axis, there will be », cutouts. The reduced area
of the cutouts will be equal to the following:

ambn,
ab

The moment of inertia of such a slab will be equal
to J-J K,where:

K =

hl2 3 hl6 3 3
h h h
i e T e TR et
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Therefore:
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and the critical load will be as follows:

2 2\?
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Let us consider a specific example. Let us assume
that the width of a cutout is two times larger than the
width of the connection between the cutouts. Then,
if there are four cutouts and five connections in the
direction of the x axis, then 13 units of length will
correspond to the distance a and the distance a/13
will correspond to each unit of length.

Since two units of length are required per one
cutout, then 8a/13will correspond to four cutouts.
There will be five cutouts in the direction of the y
axis, i.e., b/16 per one unit of length, and 105/16 per
five cutouts. Let us find X, for this case:

Fig. 3. Slab with inner cutouts
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Therefore, ( —2—71j =0.9858. The value of the

critical load N, almost has not changed, but the
volume of the slab has decreased and become as
follows:

V:abh—z—“-4-2—b-5-ﬁ=abh-0.8718 m’.
13 16 3

Let us increase the area of the cutouts. Let us
assume that the width of a cutout is three times
larger than the width of the connection between the
cutouts. The number of cutouts in the direction of the
x axis will remain the same, i.e., four. We assume
that in the direction of the y axis, their number is 10.
In this case:

K, =2£ =O.5165,(1—£) =0.981.
17 41 27

The volume of the slab will be equal to the
following:

V =abh-0.8278 m’.

If a reinforced concrete panel with the dimensions
a=3m, b==6m, h=0.3m, (E=3.25-10*specific density
p= 200 kg/m?) is weakened by the above cutouts,
then its dead weight will be as follows:

S, =V-p=8940.24 kg.

The dead weight of a solid panel with the same
dimensions will be as follows:

20

S, =abhp =10800 kg,

i.e., such a panel will be heavier than a panel with
cutouts by more than 1 ton.

Therefore, for the panel with cutouts, the
critical load has decreased by 1.9%. Meanwhile,
its weight has decreased by 17.2%. The example
above shows that it is economically efficient
to use three-layer panels with a discrete core,
providing the required design stability parameters
at reduced consumption of materials in
construction.

Conclusion

We have built a mathematical model for the
deformation of thin-walled elastic isotropic three-
layer plates and wall panels with a discrete core
in the form of a system of cross stiffeners, taking
into account their width. The thickness of the entire
structure is taken into account analytically by means
of unit column functions.

To determine critical parameters of a compressed
three-layer wall panel using the Bubnov—Galerkin
method, the eigenvalue problem has been solved.
According to the method suggested, we have
performed stability analysis of three-layer wall
panels with different values of core stiffness
and studied the impact of the discrete core
parameters on the buckling load, consumption of
materials, and efficiency of three-layer engineering
structures.

The reliable mathematical model and relative
simplicity of the analysis algorithm make it possible
to recommend the suggested method for the
assessment of efficiency of three-layer wall panels
with a discrete core.
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AHHoOTauuA

PaccmatpunBaloTCst TOHKOCTEHHbIE TPEXCMNOWHbIE NNACTUHBI M NAHENW C Bbipe3aMu, NOAKPenieHHble OPTOroHanbHOM
ceTkou pebep nnm NPAMOYroribHbIX HakNagoK napannenbHbiX KOOPANHATHBIM NUHKUAM. ToMNWwUHa BCEV KOHCTPYKLMM Mpu
3TOM YYMTbIBAETCH aHaNMTUYECKM C MOMOLLbIO €AUHNYHBIX cToN6YaThIX MyHKUNA. Llenbio paboTekl 66110 nocTpoeHne
mMaTtemaTtnyeckon moaenv AedopMMpoBaHUA U co3fgaHne MeTOAMKM pacyeTa Ha YCTOMYMBOCTb TOHKOCTEHHbIX
YNPYrnX N30TPOMHbIX TPEXCMOWHbIX NAACTUH U CTEHOBLIX MaHenen ¢ AUCKPeTHbIM BHYTPeHHUM cnoem. Metoabl: Ha
OCHOBE MPYMEHEHNS MaTemMaTnYeckoro annapara o606LeHHbIX PyHKUnA meTogom bybHoBa — ManepkuHa pelueHa
3ajava Ha cOBCTBEHHbIe 3Ha4YeHNs ANSA onpefeneHns KpUTUYECKMX napaMeTpoB CXKaToOW TPEXCIOMHOW CTEHOBOM
naHenn ¢ AUCKPETHbIM BHYTPeHHUM croeM. PesynbtaThbl: 10 NnpefnoXeHHON MeTOANKE NPOBEAEHbl pacyeThbl
TPEXCNONHbIX CTEHOBbIX NAHENen Ha yCTOMYNBOCTb NPU Pa3fMYHON XECTKOCTU BHYTPEHHEro Crnosi U uccnegoBaHo
BNUSAHWE NapameTpoB OUCKPETHOIO BHYTPEHHEro Cros Ha BENUYMHY KPUTUYECKOW Harpys3ku, MaTtepuanoemMKocTb n
3P PEKTUBHOCTb TPEXCINONHBIX CTPOUTENBHBLIX KOHCTPYKLMIA.

KntoueBble cnoBa
TpexcrnonHasa nnacTvHa, CTeHOBas NaHenb, AUCKPETHbLIN BHYTPEHHUI CION, Bbipes, pebpo ecTKoCcTu.
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