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Abstract
Introduction: The paper addresses thin-walled three-layer plates and panels with cutouts, reinforced with an orthogonal 
grid of stiffeners or rectangular reinforcement plates parallel to the coordinate lines. In this case, the thickness of the 
entire structure is taken into account analytically using unit column functions. Purpose of the study: We aimed to build 
a mathematical model of deformation and develop a method for the analysis of the stability of thin-walled elastic isotropic 
three-layer plates and wall panels with a discrete core. Methods: Based on the mathematical apparatus of generalized 
functions using the Bubnov–Galerkin method, an eigenvalue problem is solved to determine the critical parameters of 
a compressed three-layer wall panel with a discrete core. Results: According to the suggested method, we perform a 
stability analysis of three-layer wall panels with different values of core stiffness and study the impact of the discrete core 
parameters on the buckling load, consumption of materials, and efficiency of three-layer engineering structures. 
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Introduction
Currently, to improve the weight and economic 

efficiency, specific strength, and stiffness of thin-
walled structures, especially in construction, 
shipbuilding, mechanical engineering, and other 
technical industries, three-layer plates and shells are 
widely used. The heterogeneous layered structure 
of such shells provides the necessary strength and 
stiffness characteristics as well as soundproofing and 
heat and vibration isolation properties.

The used thin-walled structure analysis 
principles are common for bending flat three-layer 
panels, three-layer panels resisting compression 
and bending, and three-dimensional three-layer 
structures — shells.

Since three-layer structures have a core (solid or 
discrete, e.g., ribbed) offering relatively low resistance 
to shear, the bending strains in these structures 
are accompanied by mutual skin displacement. It is 
possible to perform three-layer panel and shell analysis 
either based on the precise methods of the elasticity 
theory or through the introduction of certain hypotheses 
that reflect the specifics of structure behavior and 
make it possible to significantly simplify the process of 
problem-solving with no considerable error.

The precise method of core element analysis 
uses an equation for a three-dimensional problem of 
the elasticity theory. This method was first used for 
thick slabs by Galerkin (1931).

In the case of cylindrical bending, Rzhanitsyn’s 

theory of built-up columns (1986) can also be applied 
effectively for the analysis of three-layer panels. In 
this case, the panel skins are considered as built-up 
column laminations while the core is considered as 
transverse and shear connections evenly distributed 
along the column length.

Three-layer panels with low section height and, 
therefore, high flexibility are usually supported on 
four sides or secured on supports and calculated 
based on the non-linear theory with account for chain 
(membrane) forces acting in the middle surface. 

The analysis of stiffened three-layer panels has 
a number of specific features. In three-layer wall 
panels (especially if there is a solid core), stiffeners 
are distributed relatively sparsely, therefore, in the 
analysis, it is necessary to account for the non-
uniformity of the distribution of normal stresses in 
the skins along the width of the panel, caused by 
shear forces along the lines where the skins and the 
stiffeners come together (Aleksandrov et al., 1960; 
Davies, 2001). 

The general theory of the analysis of three-
layer plates and shells with a structural core was 
developed by Aleksandrov (1959), Aleksandrov 
et al. (1960), Bryukker (1965), Grigolyuk and 
Chulkov (1973), Grigolyuk and Kogan (1972), 
Levchuk (2008a, 2008b) as well as Dragan and L 
evchuk (2011).

Numerous researchers (Eremeev and Zubov, 
2017; Kipiani, 2014; Kobelev et al., 1984; Kreja, 2011; 
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Pukhliy and Pukhliy, 2019) dealt with the development 
of new analytical models for three-layer plates and 
shells. The wide implementation of new materials 
that enable making structures with unique properties 
in engineering and construction has significantly 
complicated analytical models. Among the studies 
addressing methods for the analysis of thin-walled 
structures made of composite materials, we would 
also like to mention publications by Kaledin et al. 
(2014), Nguyen et al. (2019), and Solomonov et al. 
(2014).

Currently, numerical calculations of three-layer 
panels are usually performed using finite-element 
modeling packages. The skins are modeled by finite 
elements of the plates and the core is modeled 
by solid finite elements. The creation of powerful 
computing systems based on the finite element 
method (FEM) opens up opportunities for the 
development of new analytical models with regard to 
the analysis of the stress-strain state of multi-layer 
plates and shells with irregular structures (Baculin, 
2018; Golovanov et al., 2006; Grishanov, 2018). 
Mathematical models for the analysis of modern 
thin-walled three-layer structures shall meet a lot of 
requirements. Among other things, they shall allow 
us to determine with high accuracy the stress-strain 
state, load-bearing capacity, and critical buckling 
values of such structures, taking into account the 
heterogeneity of layers and a wide range of external 
effects (Karpov, 2010; Karpov et al., 2002).

Despite the fact that current computational 
resources make it possible to build and analyze 
complex finite element models in a comparatively 
short time, the very development of an analytical 
model that would reliably take into account the stress-
strain state of an irregular structure requires the 
involvement of a highly qualified computing engineer 
and significant programming efforts. The creation of 
a method for stability analysis of three-layer panels 
with a discrete core, based on the mathematical 
apparatus of generalized functions and variational 
analysis methods, is quite an important task. 

The paper builds a mathematical model and 
develops an algorithm for the analysis of three-layer 
wall panels with a discrete core in the form of some 
inner cutouts, which is equivalent to a core in the 
form of a system of wide cross stiffeners. 

Mathematical model for the analysis of plates 
and wall panels

The paper addresses plates and panels reinforced 
with an orthogonal grid of stiffeners parallel to the 
coordinate lines. The height and location of the 
stiffeners are specified according to Karpov (2010) 

using unit column functions ),( jxx −δ  )( iyy −δ  
as follows:
		

(1)

where hj, hi — the height of the stiffeners parallel to 

the y and x axes, respectively; h h hij i j� � �min , ; 

)( jxx −δ , )( iyy −δ  — the unit column functions 
equal to 1 at points where the stiffeners are located 

or 0 outside those locations. If )(),( xhhyhh iijj == , 

then h h x h yij i
j

j
i� � �min ( ); ( ) .

Therefore, the thickness of the entire structure is 
equal to h + H. If H > 0, then the plate is reinforced 
with stiffeners or reinforcement plates. If H < 0, then 
it is weakened by cutouts.

Let us consider a wall panel with thickness h 
with a rectangular cutout reinforced with eccentric 
stiffeners in the direction of the x axis.

If a slab, reinforced with stiffeners, the size and 
location of which are specified by function H(х,y)  
in the form of Eq.  (1), also has cutout holes, the 
location of which is specified by function H2 (x,y) in 
the following form:
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then the total thickness of the slab will be 

( ) ( )yxHyxHh ,, 2++ . 
The internal forces in the panel can be 

represented as follows:

Fig. 1. Wall panel with a rectangular 
cutout reinforced with stiffeners
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where expressions for the moments of inertia have 
the following form: 
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The equilibrium equation for the slab compressed 
in the direction of the x  axis will be as follows:

		
(2)

Let us consider a wall panel in the form of a three-
layer slab with a discrete core. Such a structure can 
be specified according to Karpov et al. (2002) if a 
slab of thickness h with internal cutouts of depth h/3 is 
considered. Let us assume that the cutouts have the 
same size and are rectangular with side a1 along the х 
axis and side b1 along the y axis. In the direction of the  
x axis, there will be m1 cutouts, and in the direction of 
the y axis, there will be n1 cutouts (Fig. 2).

The reduced area of the cutouts will be equal to 
the following: 

The moment of inertia of such a slab with the zero 
stiffness of the cutouts “smeared” along the entire 
plate will be equal to the following: 
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Then the moments in Eq. (2) will be as follows:
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Analysis of the efficiency of three-layer wall 
panels with a discrete core

Let us study the stability of wall panels in the form 
of three-layer plates with a discrete core compressed 
in the direction of the OX axis with force Nx uniformly 
distributed along the middle plane of the slab  
(Nx= – const). The equilibrium equation for such a slab 
has the form of Eq. (2).

Let us assume that the edges of the slab have 
pin support. We need to find such value of Nx where 
deflection W(x,y) is other than 0. This value of Nx will 
be critical. Let us present W(x,y) in the following form:

	
	

 (3)

To find the Aij coefficients according to the 
Bubnov–Galerkin method, we will derive a system of 
homogeneous linear algebraic equations.

 
 

Fig. 2. Wall panel with inner cutouts
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Having determined the integrals of known 
functions, we will obtain the following: 
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As a result, we have an eigenvalue problem. We 
need to find such values of Nx where this system has 
a non-zero solution.

If small deflections are considered, the first 
approximation of the Bubnov–Galerkin method can 
be considered, i.e., W(x,y) can be adopted in the 
following form:

W x y C x
a

y
b1 1

, sin sin .� � � � �

For a slab of constant thickness h, we will obtain 
the following: 
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For a rectangular slab at a=b, we will obtain the 
following:

N Eh
axcr � �3 615
3

2
. .

Let us consider a wall panel in the form of a three-
layer slab with a discrete core. The thickness of such 
a structure can be specified if we consider a slab of 
thickness h with inner cutouts of depth h/3 (Fig. 3).

Let us assume that the cutouts have the same 
size and are rectangular with side a1along the x axis 
and side b1 along the y axis. In the direction of the x 
axis, there will be m1 cutouts, and in the direction of 
the y axis, there will be n1

 
cutouts. The reduced area 

of the cutouts will be equal to the following:

K a m b n
ab1

1 1 1 1= .

The moment of inertia of such a slab will be equal 
to J–J1K1 where:
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and the critical load will be as follows:
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Let us consider a specific example. Let us assume 
that the width of a cutout is two times larger than the 
width of the connection between the cutouts. Then, 
if there are four cutouts and five connections in the 
direction of the x axis, then 13 units of length will 
correspond to the distance a and the distance a/13 
will correspond to each unit of length.

Since two units of length are required per one 
cutout, then 8a/13will correspond to four cutouts. 
There will be five cutouts in the direction of the y 
axis, i.e., b/16 per one unit of length, and  10b/16 per 
five cutouts. Let us find K1 for this case:
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Fig. 3. Slab with inner cutouts
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K
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critical load xN  almost has not changed, but the 
volume of the slab has decreased and become as 
follows:
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Let us increase the area of the cutouts. Let us 
assume that the width of a cutout is three times 
larger than the width of the connection between the 
cutouts. The number of cutouts in the direction of the  
x axis will remain the same, i.e., four. We assume 
that in the direction of the y axis, their number is 10. 
In this case:

   
K K
1
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27
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�
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The volume of the slab will be equal to the 
following:

30.8278 m .V abh= ⋅
If a reinforced concrete panel with the dimensions 

a = 3m, b = 6m, h = 0.3m, ( E=3.25∙104 specific density 
ρ= 200 kg/m3) is weakened by the above cutouts, 
then its dead weight will be as follows:

8940.24 kg.bS V ρ= ⋅ =
The dead weight of a solid panel with the same 

dimensions will be as follows:

10800 kg,bS abhρ= =
i.e., such a panel will be heavier than a panel with 
cutouts by more than 1 ton.

Therefore, for the panel with cutouts, the 
critical load has decreased by 1.9%. Meanwhile, 
its weight has decreased by 17.2%. The example 
above shows that it is economically efficient 
to use three-layer panels with a discrete core, 
providing the required design stability parameters 
at reduced consumption of mater ials in  
construction.

Conclusion
We have built a mathematical model for the 

deformation of thin-walled elastic isotropic three-
layer plates and wall panels with a discrete core 
in the form of a system of cross stiffeners, taking 
into account their width. The thickness of the entire 
structure is taken into account analytically by means 
of unit column functions.

To determine critical parameters of a compressed 
three-layer wall panel using the Bubnov–Galerkin 
method, the eigenvalue problem has been solved. 
According to the method suggested, we have 
performed stability analysis of three-layer wall 
panels with different values of core stiffness 
and studied the impact of the discrete core 
parameters on the buckling load, consumption of 
materials, and efficiency of three-layer engineering  
structures. 

The reliable mathematical model and relative 
simplicity of the analysis algorithm make it possible 
to recommend the suggested method for the 
assessment of efficiency of three-layer wall panels 
with a discrete core.
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Аннотация
Рассматриваются тонкостенные трехслойные пластины и панели с вырезами, подкрепленные ортогональной 
сеткой ребер или прямоугольных накладок параллельных координатным линиям. Толщина всей конструкции при 
этом учитывается аналитически с помощью единичных столбчатых функций. Целью работы было построение 
математической модели деформирования и создание методики расчета на устойчивость тонкостенных 
упругих изотропных трехслойных пластин и стеновых панелей с дискретным внутренним слоем. Методы: На 
основе применения математического аппарата обобщенных функций методом Бубнова – Галеркина решена 
задача на собственные значения для определения критических параметров сжатой трехслойной стеновой 
панели с дискретным внутренним слоем. Результаты: По предложенной методике проведены расчеты 
трехслойных стеновых панелей на устойчивость при различной жесткости внутреннего слоя и исследовано 
влияние параметров дискретного внутреннего слоя на величину критической нагрузки, материалоемкость и 
эффективность трехслойных строительных конструкций.
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