
63

DOI: 10.23968/2500-0055-2021-6-4-63-71

A STUDY ON SUDDEN EXPANSION HYDRODYNAMIC PHENOMENA  
OCCURRING IN CYLINDRICAL PIPES 

Arestak Sarukhanyan*, Garnik Vermishyan

National University of Architecture and Construction of Armenia
Yerevan, Armenia

*Corresponding author: asarukhanyan51@mail.ru

Abstract
Introduction: This paper studies the frequency with which hydrodynamic parameters change in the sudden expansion 
section of axisymmetric pressure flow, based on the boundary layer equations. Methods: The suggested method reveals 
the regularity of changes in the hydrodynamic parameters of the flow in the transitional area, making it possible to obtain 
a velocity profile in any cross-section under common initial and boundary conditions. Based on the general solutions, we 
studied the hydrodynamic processes occurring in the transitional area of the effective sudden cross-section expansion 
within the axisymmetric pressure movement, in the following cases: a) when the velocity is constant at any point of the inlet 
face; b) when the velocity is distributed along the inlet face according to the parabolic law. Our calculations were carried 

out for different values of the expansion factor: 0.3; 0.5; 0.7.a
R

α = = Results: Based on the results of the computer-aided 
experimental study, we obtained velocity diagrams along the length of the transitional area with constant and parabolic 
velocity distributions for fluid inflowing into the expanded section. We also determined the patterns of pressure distribution 
along the length of the relevant section.
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Introduction
In transitional areas of the effective cross-section 

(cross-section input and output, sudden expansion 
and narrowing, etc.), rearrangement of the velocity 
field is accompanied by a change in hydrodynamic 
parameters. The theoretical aim of this study, 
focused on the transitional area, was to determine 
how regularly hydrodynamic parameters change 
along the pipe and to develop calculation methods 
for energy losses. 

A number of theoretical and approximate 
calculation methods were developed for studying 
the hydrodynamic phenomena occurring in the 
transitional areas of the input section. Each 
calculation method is based on conclusions regarding 
the flow’s nature, which are used in theoretical 
studies and result reviews. Such conclusions are 
often related to specific flow intervals; therefore, the 
results obtained have limited applicability. The first 
known study on flow velocity change patterns in the 
transitional area of a circular pipe input was carried 
out by Boussinesq (Boussinesq, 1891). The main 
goal of that study was to assess disturbances in the 
velocity profile based on the velocity profile in the 
stabilized area. It should be noted that the spread 
of the obtained results is essential, especially for 
input-adjacent sections of the pipe. Schiller, using the 
boundary layer theory principles, conducted research 

(Loitsyansky, 1973) on velocity rearrangement in the 
transitional input area, and developed an appropriate 
calculation methodology (Schiller, 1936). The 
obtained results provide good, consistent data on 
the central sections of the pipe when Rr ≤ . As 
for near-wall sections, this is where considerable 
disturbances occur (Targ, 1951).

Schlichting suggested a more accurate method 
for calculating the plane-parallel motion of the 
transitional input area (Schlichting, 1974). This 
method has been used to carry out a numerical 
integration of boundary layer equations. In addition 
to the numerical technique, Schlichting (1934) also 
suggested an analytical method for assessing the 
transitional area. This method is based on the idea 
that the flow range is divided into: a) the central 
section, where velocities are constant, b) the near-
wall sections, where velocities keep changing 
according to the boundary layer regularity. The 
obtained solutions make it possible to reveal the 
velocity distribution pattern for any cross-section of 
the input section’s transitional area. Yemtsev (1978) 
made use of the velocity parabolic distribution pattern 
in the boundary layer and constant velocity condition 
at the core. He arrived at similar conclusions. As 
a result, he found solutions for the velocity and 
pressure change in the plane-parallel motion input 
section of the transitional area.
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Slyozkin (1955) and Targ (1951) studied the 
regularities in the hydrodynamic parameters’ 
behavior in the transitional area of the pipe input 
section. By making successive approximations 
and simplifying the Navier–Stokes equations, 
they formulated the boundary problem. Analytical 
solutions to this problem allow for determining how 
regularly the velocity and pressure change. The 
results obtained are remarkably consistent with the 
findings of experimental investigations. Comparative 
analyses confirm the reliability of the results 
obtained. It should be noted that the aforementioned 
studies pertain only to the input sections of the pipe. 
However, velocity field changes take place not only 
in input sections but also in sections where the 
pipe’s geometrical parameters change. Studies on 
regularities of changes in the flow’s hydrodynamic 
parameters in the aforementioned sections are of 
considerable practical interest and importance.

A similar study was carried out by Chen (1973), 
where approximate solutions were found under 
cylindrical and plane-parallel isotherm laminar 
motion conditions, ensuring satisfactory accuracy 
of the results. Studies of hydrodynamic phenomena 
running in the input transitional area along fluid lines 
in the aforementioned section were carried out in a 
3D environment by integration of the Navier–Stokes 
equations’ finite elements (Young, 2016). The studies 
demonstrate velocity and pressure distribution 
curves. Comparative analysis of the results obtained 
via numerical method was provided in (Hornbeck, 
1964). Studies carried out in the boundary layer of 
the input section, under fourth-power (four-step) 
velocity change conditions (Mohanty and Asthana, 
1979), resulted in laws of velocity and pressure 
change. Studies on velocity and pressure change 
regularities in circular-section cylindrical pipes and 
under plane-parallel motion conditions followed the 
method developed in (Sparrow et al., 2004) for fluid 
lines of arbitrary section. The results obtained were 
subjected to comparative analysis. 

Belyaev et al. (2015) developed a mathematical 
model for identifying the velocity and pressure 
fields when viscous incompressible fluid flows in 2D 
variable cross-section ducts in laminar flow mode. 
However, the solutions suggested are not applicable 
to determining the hydrodynamic parameters of the 
sudden expansion sections.

The studies listed above essentially present 
comments on phenomena occurring in the input 
section of the pipe. Meanwhile, hydrodynamic 
parameters’ rearrangement processes also occur in 
other transitional areas. There are few papers dealing 
with this subject. By using the numerical integration 
of viscous-plastic fluid flow motion equations, 
researchers built flow lines and determined velocity 
and pressure changes along the axial direction within 
the sudden expansion section (D/d = 4) (Rocha et 
al., 2007). Mullin et al. (2009) carried out a thorough 

experimental investigation on the sudden expansion 
section. Using magnetic resonance imaging 
techniques, they successfully obtained quantitative 
estimates for velocity change in the transitional 
area. Hava and Rusak (2000) provided quantitative 
estimates for Navier–Stokes equations members 
under sudden symmetric and asymmetric expansion 
conditions. This results in the numerical integration of 
the nonlinear nonhomogeneous differential equations 
obtained by the researchers. Integration results 
were compared with experimentally obtained data. 
A number of important experimental investigations 
were conducted in the sudden expansion section 
(Fester et al., 2008). The researchers built a test 
rig and studied flows of both Newtonian and non-
Newtonian fluids through sudden contractions of 
three diameter ratios of 0.22, 0.5, and 0.85. 

Sarukhanyan et al. (2020) reviewed the change 
patterns in the hydrodynamic parameters of viscous 
fluid laminar motion in the transitional area of the 
input section within a cylindrical pipe of R radius 
under the initial arbitrary distribution of velocity 
conditions. Under such conditions, the viscous 
fluid is axisymmetric, and isotherm motion occurs. 
In the input section of the pipe, the velocity of fluid 
flow along the pipe walls, in accordance with the 
velocity diagram u= φ(r), reaches zero, while the 
velocity diagram changes. These changes extend 
for a certain distance along the pipe. A boundary 
layer develops near the pipe walls. In the boundary 
 
layer, the velocity gradient 

    
 becomes too large; 

for this reason, friction force values increase as 
well, regardless of the μ viscosity coefficient. The 
boundary layer gradually spreads and covers the 
entire pipe. Therefore, studies on the transitional 
area should use boundary layer equations.

Prandtl (Loitsyansky, 1973; Schlichting, 1974) 
suggested using the Navier–Stokes equations for 
the boundary layer. 

Furthermore, Prandtl (Loitsyansky, 1973; 
Schlichting, 1974) obtained equations for the boundary 
layer by simplifying the Navier–Stokes equations. 
Viscous forces mostly act in the boundary layer. 
For this reason, while simplifying the Navier–Stokes 
equations, Prandtl neglected those equation members 
that were too small in comparison with viscous forces. 
He derived simplified equations for the boundary layer. 
This allowed for finding the regularities of viscous fluid 
laminar motion in the transitional area of the circular 
cylinder’s input section.

Theoretical Models
We shall now study the hydrodynamic phenomena 

typical of viscous fluid laminar motion within the 
sudden expansion segment of a cylindrical pipe’s 
section (Figure 1). The pipe is considered rigid; the 
fluid, incompressible.

The sudden expansion of a circular cylindrical 
pipe causes fluid velocity field deformation. Our study 

du
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will concern viscous fluid laminar motion regularities 
in the velocity rearrangement section, using the 
same methodology as in research on the transitional 
area of the pipe’s input section (Schlichting, 1974; 
Slyozkin, 1955). We shall use the following boundary 
layer equations for the cylindrical coordinate system 
(Loitsyansky, 1973; Schlichting, 1934):

	 (1)

		   (2)

To simplify Eq. (1), we take into consideration 
the conclusion made in (Schlichting, 1934, 1974) 
according to which v<<u, hence v=0. We arrive at:

		  (3)

where u and v are the components describing 
velocity in the direction of z and r coordinates. 

To integrate nonlinear nonhomogeneous 
differential equations, we make the following 
 
assumption: the u coefficient of         member is 
replaced by the average velocity of the effective 
cross-section.

		  (4)

where ( )u rϕ=  is the function of velocity distribution 
in fluid entering the sudden expansion section.

Following this assumption, the study of regular 
patterns in the change of the hydrodynamic 
parameters within the sudden expansion segment 
(Figure  1) is reduced to the integration of the 
following equations:

	        (5)

		
(6)

Figure 1. Sudden expansion segment: a – radius before expansion, R – radius after expansion

u
z
∂
∂

in case of the following initial and boundary 
conditions:

	 u=0, v=0, when r=a  z=0.	 (7)

	 u=φ (r), when z=0,  0 ≤ r ≤ a.	 (8)

	 u→u', when  z→∞,  0 ≤ r ≤ a.	 (9)

where V' is the velocity of fluid in the stabilized 
section of the pipe, which is determined by the 
following equation: 

		  (10)

Eq. (10) has the following solution: 

	      (11)

where 
u V P

z
R

0

2

2

1

8
�

�
� � �

�
�

�max

� � is the average velocity 
of the effective cross-section.

It follows from Eqs. (5) and (6) that, in each fixed  
 
section of the transitional area,            . Therefore, 
pressure in all points of the effective cross-section 
is equal and only changes when passing from one 
section to another P=P(z).

Solution of Eq. (5) in case of (7), (8), (9) boundary 
conditions is Sarukhanyan et al (2020).

	

(12)

 

where J0(λk) is the zero-order Bessel function of the 
first kind, J1(λk) is the first-order Bessel function of the 
first kind, J2(λk) is the second-order Bessel function 
of the first kind. The eigenvalues of the problem are 
determined from the boundary condition, when r=R , 
u=0. As a result, we obtain

�
�

�
P
r

0
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                                                        ,

which means that the eigenvalues of the problem 
are the roots of the second-order Bessel function 
of the first kind. We use the boundary condition for 
determining the values of Ск constant coefficients (8) 
and obtain the following:

     

 (13)

We shall now multiply the two sides of Eq. (13) by 
orthogonal functions equivalent to eigenfunctions: 

     

 (14)

and after integration in the 0 r R≤ <  interval, we 
obtain          :

	

(15)

Let us represent Eq. (15) in the following form:

	          
(16)

where
		

(17)

Pressure change behavior along the pipe is 
obtained from Eq.  (5), while velocity change is 
obtained from Eq. (12), which results in the following 
equation:

(18)

It follows that in the boundary state when ∞→z
in case of pressure distribution and laminar motion, 
pressure change regularities coincide:

		
(19)

By integrating Eq.  (15), we determine the 
regularity of pressure change:

(20)

It follows from Eq. (20) that PP =0  when 0=z .

Results and Discussion
The solutions obtained are applicable to the 

general boundary and the initial conditions of the 
problem. By using general solutions, we can obtain 
new solutions, equivalent to the conditions provided 
for each special case. Let us now consider two 
special cases.

Case I. Let us assume that the velocity of fluid 
entering the sudden expansion section is constant at 

all points. Thus, we have ( ) 0r u constϕ ∗= = , 0≤r<a, 
and define the value of L1 accordingly:

(21)

By substituting L1 in Eq.  (16) and taking into 

consideration that                       , we obtain the values 
of Сk coefficients:

		

(22)

Using the values of kC  coefficients that we 
obtained, we determine the dimensionless regularity 
of the velocity change in the transitional area:
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                                                                (23)

where 
0u

uu = , 
a
R

α = , 
rr
R

= , 
Re
zz

R
=

⋅
  

 
are the dimensionless values.

To plot the diagrams of velocity distribution in 
case of the transitional area’s sudden cross-sectional 
expansion, when the velocity of fluid entering the 
sudden expansion section is constant, we carried out 
numerical calculations for ɑ=0.3; 0.5; 0.7  cases, using 
Eq. (23). Figure 2 presents combined diagrams of 
various  ( z ) velocity distribution patterns in different 
sections of the transitional area, and Figure  3 
shows the same velocity change curves in different 
sections when ɑ=0.7. The resulting graphs reveal the 
hydrodynamic picture of the processes occurring 
in the transitional area, which is important for the 
correct design of various hydraulic systems.

The plotted diagrams of velocity distribution in 
the transitional area enable the conclusion that 
the velocity diagram of fluid entering the sudden 
expansion section with a constant velocity undergoes 

a sudden change. Specifically, velocity increases in 
the center and decreases near the walls. Moreover, 
a motion of fluid in the opposite direction can be 
observed as well. This pattern, which starts at 
a certain z  = 0.2 velocity in the direction of the 
motion, subsequently weakens, and at the end 
of the transitional area, we arrive at the parabolic 
distribution of the velocity.

Figure 4 shows graphs                of velocity 
change along the length of the pipe at                                                                  

points of the effective cross-section, for the ɑ=0.7 
case. It follows from the diagram of velocity 
rearrangement along the length of the pipe that in 
the cross-section of the sudden expansion entrance 
segment, the pattern of constant velocity distribution 
u0

*=const becomes deformed, and velocity gets 
rearranged in the direction of the motion. At the end 
of the transitional area, the pattern of the velocity 
change becomes parabolic. 

From the curves obtained, we derive the 
stabilization length. Given that in  0=r , the velocity 
equals 0.99u = , we obtain =z  0.174.

By substituting the values of Сk coefficients 
from Eq. (22) in Eq. (20), we arrive at the pressure 
distribution function for the sudden expansion section.

Figure 2. Superimposed graphs of lengthwise velocity change in the transitional area:
1. z  = 0.02; 2. z  = 0.03; 3. z  = 0.04; 4. z  = 0.06; 5. z  = 0.08; 6. z  = 0.09; 7. z  = 0.2

Figure 3. Graphs of lengthwise velocity change in the transitional area depending on z  and r  coordinates
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Case II. Let us assume that the velocity 
distribution of fluid entering the sudden expansion 
section is parabolic. Therefore,

Figure 4. Velocity change in 0; 0.2; 0.4; 0.6; 0.8; 0.9r =  points of the effective cross-section:

1. ;0=r  2. 0.2;r =  3. 0.4;r =  4. 0.6;r =  5. 0.8;r =  6. 0.9.r =
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As we substitute 1L  from Eq. (24) into Eq. (16) 

and take 
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coefficient kC
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Having obtained the values of Ck coefficients, we 
arrive at the dimensionless patterns for the velocity 
change in the transitional area:
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To discover velocity change patterns for sudden 
cross-sectional expansion in the transitional area, 

we have made calculations for 0.3; 0.5; 0.7α =  
cases, based on Eq. (26). On the basis of the values 
obtained, we have plotted diagrams representing the 
general behavior of velocity distribution in different 
cross-sections of the transitional area in Figure 5. 
Figure 6, in turn, shows separate diagrams according 
to the cross-sections ( z ) in case 5.0=α .

F igure   7  shows graphs ( )zfu =  o f 
velocity change along the length of the pipe at 

0; 0.2; 0.4; 0.8; 0.9r =  points of the effective 
cross-section, for the 0.5α =  case. It follows from 
the diagram of velocity rearrangement along the 
length of the pipe that in the cross-section of the 
sudden expansion entrance segment, the pattern of 
parabolic velocity distribution

 

becomes deformed, and velocity gets rearranged 
in the direction of the motion. At the end of the 
transitional area, the pattern of the velocity change 
becomes parabolic.
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      According to the graphs provided in the figures 
above, the length of the stabilization section is 
obtained under the following conditions: when 0=r

the velocity equals , 0

0.99u
u

=
we obtain =z  0.163.

To obtain the pressure distribution function in the sudden 
expansion section, we substitute the values of Ck coefficient 
from Eq. (25) into Eq. (20), and arrive at the following. 

Conclusion
The proposed universal method, designed 

for calculating velocity rearrangement in the 
transitional area, makes it possible to find the 
regular patterns in hydrodynamic parameter 
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Figure 5. Superimposed graphs of lengthwise velocity change in the transitional area:
1. z  = 0.04; 2. z  = 0.05; 3. z  = 0.06; 4. z  = 0.08; 5. z  = 0.1; 6. z  = 0.2

Figure 6. Curves of lengthwise velocity change in the transitional area depending on z  and r  coordinates

u
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changes under general boundary conditions. 
The use of the relations that we discovered has 
defined the process of velocity field changes 
dur ing sudden cross-sectional expansion, 
provided that the presence of fluid is constant 
and the parabolic distribution law conditions 
are met. This makes it possible to calculate the 
changes in the hydrodynamic flow parameters, 
as well as make generalizations. The regularities 
characterizing the velocity field changes in the 
transitional area, along with the diagrams that 
illustrate them, allow for correcting the design of 
the relevant hydromechanical equipment units. 
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Figure 7. Velocity change in 0; 0.4; 0.8; 0.9r =  points of the effective cross-section:
1. ;0=r  2. 0.2;r =  3. 0.4;r =  4. 0.8;r =  5. 0.9r =



71

References
Belyaev, L. A., Zaitsev, A. S., Kondakov, A. A., Shevelev, S. A., Valkov, E. P. and Matveeva, A. A. (2015).                                    
Numerical analysis of fluid particles motion in curved ducts. MATEC Web of Conferences, Vol. 37, 01007. DOI: 10.1051/
matecconf/20153701007.

Boussinesq, J. (1891). Comptes rendus hebdomadaires des séances de l’Académie des sciences, Vol. CXII (1), pp. 9–14, 
49–51.

Chen, R.-Y. (1973). Flow in the entrance region at low Reynolds numbers. Journal of Fluids Engineering, Vol. 95, Issue 1, 
pp. 153–158. DOI: 10.1115/1.3446948.

Durst, F., Ray, S., Ünsal, B. and Bayoumi, O. A. (2005). The development lengths of laminar pipe and channel flows. Journal 
of Fluids Engineering, Vol. 127, Issue 6, pp. 1154–1160. DOI: 10.1115/1.2063088.

Fester, V., Mbiya, B. and Slatter, P. (2008). Energy losses of non-Newtonian fluids in sudden pipe contractions. Chemical 
Engineering Journal, Vol. 145, Issue 1, pp. 57–63. DOI: 10.1016/j.cej.2008.03.003.

Gücüyen, E., Erdem, R. T. and Gökkuş, Ü. (2019). Numerical modelling of sudden contraction in pipe flow. Sigma: Journal 
of Engineering and Natural Sciences, Vol. 37, No. 3, pp. 903–916.

Hava, T. and Rusak, Z. (2000). Viscous flow in a slightly asymmetric channel with a sudden expansion. Physics of Fluids, 
Vol. 12, Issue 9, pp. 2257–2267. DOI: 10.1063/1.1287610.

Hornbeck, R. W. (1964). Laminar flow in the entrance region of a pipe. Applied Scientific Research, Section A, Vol. 13, pp. 
224–232. DOI: 10.1007/BF00382049.

Letelier, S. M. F. and Leutheusser, H. J. (1983). Unified approach to the solution of problems of unsteady flow in long pipes. 
Journal of Applied Mechanics, Vol. 50, Issue 1, pp. 8–12. DOI: 10.1115/1.3167023.

Loitsyansky, L.G. (1973). Fluid and gas mechanics. 4th edition. Moscow: Nauka, 847 p.

Mohanty, A. K. and Asthana, S. B. L. (1979). Laminar flow in the entrance region of a smooth pipe. Journal of Fluid                
Mechanics, Vol. 90, Issue 3, pp. 433–447. DOI: 10.1017/S0022112079002330.

Mullin, T., Seddon, J. R. T., Mantle, M. D. and Sederman, A.J. (2009). Bifurcation phenomena in the flow through a sudden 
expansion in a circular pipe. Physics of Fluids, Vol. 21, Issue 1, 014110. DOI: 10.1063/1.3065482.

Rocha, G. N., Poole, R. J. and Oliveira, P. J. (2007) Bifurcation phenomena in viscoelastic flows through a symmetric 1:4 
expansion. Journal of Non-Newtonian Fluid Mechanics, Vol. 141, Issue 1, pp. 1–17, DOI: 10.1016/j.jnnfm.2006.08.008.

Sarukhanyan, A., Vartanyan, A., Vermishyan, G. and Tokmajyan, V. (2020). The study of hydrodynamic processes occurring 
on transition of sudden expanding of hydraulic section of plane – parallel full pipe flow. TEM Journal, Vol. 9, Issue 4, pp. 
1494–1501. DOI: 10.18421/TEM94-23.

Schiller, L. (1936). Fluid flow in pipes. Moscow – Leningrad: Joint Scientific and Technical Publishing House (ONTI).

Schlichting, H. (1934). Laminare Kanaleinlauf Strömung. ZAMM, No. 14, pp. 368–373.

Schlichting, H. (1974). Theory of boundary layer. Moscow: Nauka, 711 p.

Slyozkin, N. A. (1955). Dynamics of viscous incompressible fluid. Moscow: Gostekhizdat, 520 p.

Sparrow, E. M., Lin, S. H. and Lundgren, T. S. (2004). Flow development in the hydrodynamic entrance region of tubes 
and ducts. The Physics of Fluids, Vol. 7, Issue 3, 338. DOI: 10.1063/1.1711204.

Targ, S. M. (1951). Fundamental problems of the theory of laminar flow. Moscow: Gostekhizdat, 420 p.

Yemtsev, B. T. (1978). Technical hydrodynamics. Moscow: Mashinostroyeniye, 463 p.

Young, F. J. (2016). The entrance region of circular pipes revisited. Open Access Library Journal, Vol. 3, No. 7, pp. 1–7. 
DOI: 10.4236/oalib.1102675.

Arestak Sarukhanyan, Garnik Vermishyan — Pages 63–71
A STUDY ON SUDDEN EXPANSION HYDRODYNAMIC PHENOMENA OCCURRING IN CYLINDRICAL PIPES 


