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Abstract
Introduction: Usually, to analyze statically indeterminate rod systems, the classical displacement method and pre-
prepared tables for two types of rods of the main system are used. A mathematically correct representation of local 
loads with the use of generalized functions makes it possible to find an accurate solution of the differential equation for 
the equilibrium of a beam exposed to an arbitrary transverse load. Purpose of the study: We aimed to obtain analytical 
expressions for functions of deflection, rotation angles, transverse forces, and bending moments depending on four 
types of local loads for beams with different boundary conditions, so as to apply accurate solutions in the displacement 
method. Methods: We propose an analytical form of the displacement method to analyze rod structural models. For 
beams exposed to different types of transverse load (uniformly distributed force, concentrated force, or a couple of forces), 
accurate analytical solutions were obtained for functions of deflection, bending moments, and transverse forces at different 
types of beam ends’ restraint. This is possible due to the fact that concentrated load and load in the form of the moment 
of force can be specified by using unit column functions. By transforming Mohr’s integrals, using integration by parts, we 
show that the system of canonical equations of the displacement method was obtained based on the Lagrange principle. 
Results: Based on the analysis of a statically indeterminate frame, the effectiveness of the proposed analytical method 
is shown as compared with the classical displacement method.

Keywords
Rod systems, displacement method, beam bending equation, Mohr’s integral, mathematical model, work of internal forces, 
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Introduction
Rod systems (beams, frames, trusses, combined 

structures) are widely used in the construction of 
various structures (Babanov, 2011; Ignatyev, 1979; 
Leontyev et al., 1996). To perform stress-strain 
analysis of such structures, the displacement method 
is usually used (Ilin et al., 2005; Maslennikov, 1987; 
Maslennikov et al., 2020).

Currently, almost all structural calculations are 
performed with the use of computer technologies, 
which makes it possible to automate the process 
and ensure a quite high accuracy of the calculations 
(Akimov and Mozgaleva, 2014; Karpov, 2006, 2010, 
2011; Kobelev, 2018).

It is not difficult to obtain an accurate solution of 
the differential equation for the equilibrium of a beam 
exposed to distributed load (Korn and Korn, 1974; 
Smirnov, 1967). However, obtaining an accurate 
solution for beams exposed to local loads mentioned 
above, described by delta functions, presents 
particular mathematical difficulties (Belostochny, 
1999; Korneyev, 2011; Mikhailov, 1980). When a 
concentrated load is described by delta functions, 
it means that the load is applied to the point, and 
that is impossible in real practice. In the course 

of structural calculations for structures having 
various irregularities or exposed to local loads, the 
mathematical apparatus of the theory of generalized 
functions is widely used (Alyukov, 2011, 2012; 
Belostochny, 1999; Ilin et al., 2005; Kobelev, 2018; 
Kobelev and Lukashevich, 2020a, 2020b; Mikhailov, 
1980; Mikhailov et al., 1990). To specify correctly the 
location of stiffeners reinforcing a shell, Karpov (Ilin 
et al., 2005) introduced special unit column functions 
equal to the difference between two unit functions 
and showed how to describe local loads applied to 
a small area, by using those functions. In this case, 
finding an accurate solution of the equation for the 
equilibrium of a beam exposed to local loads does 
not present any challenges (Belostochny, 1999; 
Korneyev, 2011; Mikhailov et al., 1990). 

Analytical displacement method
Let us examine in detail the essence of the 

displacement method used to analyze statically 
indeterminate frames (Babanov, 2011; Ilin et al., 
2005; Maslennikov, 1987; Maslennikov et al., 2020). 
In the analysis of frame systems, to obtain the main 
system of the displacement method, the following 
additional connections are introduced: angular 
connections preventing the rotation of joints in areas 
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with no full joints, and linear connections preventing 
linear displacements. 

After that, in the main system, unit generalized 
displacements (angular or linear) are specified in the 
direction of the introduced connections, and then, in 
sequence, reactions in these connections from the 
displacements and external load (force factors) are 
determined based on conformity of the main system 
to the specified one.

If we denote these reactions by rkj, and unknown 
generalized displacements by Zj. then overall 
reactions in the jth introduced connection in the 
system with n unknown quantities will be equal to  

            where rkF  is the reaction in the kth 
connection from the external load.

In the displacement method, the sum of reactions 
in the additional connections from the displacement 
of these connections and the external load is equal 
to zero, i.e.:

 (1) 

Here,          is the sum of the works of internal 
forces on virtual displacements; rkF is the sum of 
the works of external forces on virtual displace- 
ments. 

Since reactions in additional connections act in 
the direction of the specified unit displacements, then 
the work of internal forces on these displacements 
is positive, and the work of external forces on 
virtual displacements, in the direction of additional 
connections preventing the displacement of joints 
of the main system, is negative. Therefore, the 
main system of the displacement method is based 
on the following: in equilibrium, the work of the rod 
system’s internal forces on virtual displacements 
is equal to the work of external forces on virtual 
displacements, i.e. the displacement method uses 
the same idea as the Lagrange principle of virtual  
displacements.

The main system of the displacement method 
consists of individual rods, having uniform cross-
section, of two types: rigid support – rigid support 
and rigid support – joint. 

These rods are statically indeterminate beams, 
analyzed in structural mechanics by using the force 
method at various transverse loads, with their ends 
analyzed in terms of unit displacements. That is why, 
when performing calculations with the displacement 
method, pre-prepared tables are used (Maslennikov, 
1987; Maslennikov et al., 2020).

However, to determine the stress-strain state of 
statically indeterminate beams, it is possible to find 
an analytical solution to the problem by integrating 
the differential equation of the deflection curve of 
the beam, using not only equilibrium equations 
(static relations) but geometric relations (kinematic 

relations) and boundary conditions as well. 
Let us consider the work of various force factors 

on corresponding displacements. If a force factor is 
transverse load q(х), which may be represented by 
distributed load, concentrated force, or the moment 
of a couple of forces, it does work on displacements  
w(х), i.e. the work of the load is equal to q(х)w(х).

I f  a force factor is bending moment  
                   , then it does work on displacement                      
                      , which is a function of the curvature 
of the elastic line of the beam, i.e. the work of the 
moment is equal to Mxχ1(x).

If a force factor is transverse force Qx, then it does 
work on displacement, which is the angle of cross-
section displacement that, due to its smallness, is 
replaced by tangent, i.e. the work of the transverse 
load is equal to Qxw'(x).

It would be logical to think that the work of the 
force on some displacement is always positive. 
However, in structural mechanics, it is believed that it 
can be negative if the direction of the force does not 
coincide with the direction of virtual displacements. 
Therefore, Eq. (1) takes the plus sign.

In the classical displacement method, the 
coefficients of the unknown quantities and the free 
terms of the system of canonical equations are 
determined based on the equilibrium of the cut-
off parts of the main system, containing additional 
angular and linear connections. If we use the 
theorem of reciprocal reactions and displacements 
(Babanov, 2011; Maslennikov, 1987), then the 
coefficients of the unknown quantities in Eq. (1) can 
be determined by Mohr’s equation:

(2)

where m is the number of integration sections 
along the entire frame for a rod with length Ls , with 
constant stiffness EJs;        is the bending moment in 
the main system of the displacement method at the 
section [0, Ls] from the unit displacement of the kth 
introduced connection;        is the bending moment 
in the main system of the displacement method 
at the section [0, Ls] from the unit displacement of 
the jth introduced connection. Here,  Mj

0=–EJj φ"j(x),  
Mk

0=–EJkφ"k (x). Therefore:

The free terms of the system of canonical 
equations of the displacement method are also 
determined by Mohr’s equation:

  
(3)

w x Z xj j j
'' ''( ) ( ),� φ w x Z xk k k

'' ''( ) ( ).� φ
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where 0
FM  is the bending moment in the main 

system of the displacement method at the section  
[0, Ls] from the specified load.

By substituting the moments in Eq. (2), we obtain 
the following:

(4)

which is the work of internal forces from the 
unit displacements in the direction of additional 
connections. Based on the theorem of reciprocal 
virtual works, k j( ) ( ).  Then:

where 

Thus,        is the sum of the works of

internal forces on virtual displacements.
By transforming the integral  

with the double integration by parts, we obtain 

 Since , 

then: 

Therefore:

which is the work of external forces on finite 
displacements.

Thus, the system of canonical equations of the 
displacement method (mathematical model for the 
deformation of rod systems) is obtained under the 
following condition: in equilibrium, the work of the 
rod system’s internal forces on finite displacements 
is equal to the work of external forces on finite 
displacements. The same principle of developing 
a mathematical model for the deformation of rod 
systems is applied when the force method is used.

In the classical form of the displacement method 
for the formation of a system of canonical equations, 
it is necessary to construct in the main system, using 

1

n
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j

r Z
=
∑

φ φ

Ç1
2

1
2

1
0

0

M dx

EJ Z x

П

x Z dx

x

L

j j j

L

j j

s

s

( ) ( ) .

corresponding tables, diagrams of bending moments 
from the sequentially specified unit displacements 
in the direction of additional connections M0

i , where 
i=1,2,....n , and a diagram of bending moments M0

F 
from the external transverse load specified in a 
particular way. For instance, if the concentrated load 
is described by delta functions, then the function 
of bending moments M(x)=–EJw''(х)  contains 
points where the smoothness of the function is lost 
and sometimes breaks of continuity occur upon 
differentiation. If the function w''(х) is characterized 
by discontinuity, then w'''(х)  does not exist, and 
the function w(х) does not satisfy the equation for 
the equilibrium of a beam in bending EJwIV=q. The 
diagrams mentioned are constructed for a beam 
fixed at the ends in a particular way.

In the course of the study, for different types of 
fixing the ends of a beam exposed to transverse 
load (uniformly distributed force, concentrated force, 
or the moment of a couple of forces), accurate 
analytical solutions were obtained for the function 
of deflection w(х). This is possible due to the fact 
that concentrated load and load in the form of 
the moment of force can be specified by using 
unit column functions. In this case, by successive 
integration of the equation EJwIV=q, it is possible 
to find deflection in the form of the continuous 
differentiable function of deflection w(х), having 
derivatives w'(х), w''(х), w'''(х), and wIV(х)  Besides, to 
determine the coefficients of the unknown quantities 
rkj and the free terms rkF of the system of canonical 
equations of the displacement method, there is no 
need to construct diagrams of bending moments 
M0

i and M0
F since, due to the obtained analytical 

expressions for w(х) and w''(х), the moments 
indicated can also be specified in the form of 
analytical functions considering the characteristics 
of the applied load. 

The proposed analytical method not only 
simplifies the analysis of rod systems but facilitates 
computing programming significantly.

Let us find an analytical expression for deflection 
w(х) bending moment Mx , and transverse force Qx 
for a beam with span Ls under the following types of 
transverse load q: 

1. Uniformly distributed along the entire length of 
the beam [0, Ls];

2. Uniformly distributed along a part of the beam 
[х1, х2];

3. Concentrated, applied to some point ɑ1;
4. Moment of a couple of forces.
We consider two types of fixing the beam ends: 

rigid support at х=0 and х=Ls; rigid support at х=0 
and hinged support at х=Ls. The w(х), Mх, and 
Qх expressions are determined at the unit value 
of the load and the arbitrary value of EI, where  
Mx=–EIw''(х), Qx=–EIw'''. 
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the beam, then         is obtained by 
 
 
multiplying the load                           .

Let us find an accurate solution to the equation for 
the equilibrium of the beam: 

  (6)

Let the load q=const be uniformly distributed 
along the entire length of the beam [0, Ls]. In this 
case, taking into account the boundary conditions at 
x=0(w(0)=0, w'(0)=0), the accurate solution to Eq. (6) 
will be as follows: 

         (7)

The С1 and С2 constants can be determined based 
on the boundary conditions at x=Ls.

If, at x=Ls, the beam is rigidly fixed, then w(Ls)=0, 
w'(Ls)=0, i.e. 

Whence it follows that:

  (8)

Thus, if the load q is uniformly distributed along 
the entire length of the beam [0, Ls] , and both ends 
of the beam are rigidly fixed, then w(х)  will take the 
form of Eq. (7) with account for Eq. (8) and q=1. The 
bending moment Mx and transverse force Qx, at the 
unit value of the load, will take the following form:

  
(9)

Let the beam have a hinged support at x=Ls. In 
this case, the boundary conditions w(Ls)=0, w''(Ls)=0,  
shall apply, i.e.: 

Whence it follows that:

          (10)

Thus, if the load q is uniformly distributed along 
the enitre length of the beam [0, Ls], at х=0 , it is fixed 
rigidly, and at  x=Ls, it has a hinged support, then the 
function of deflection will take the form of Eq. (7) with 
account for Eq. (10) and the unit value of the load. 
The bending moment and transverse force at the unit 
value of the load will take the form of Eq. (9) at С1 и 
С2 in the form of Eq. (10).

Let the load be uniformly distributed along a part 

of the beam [х1,х2]. In this case, q P x� � 1δ( á )

where 1 1 2δ( á ) ( ) ( );x u x x u x x� � � � �  

1 2( ) and ( )u x x u x x− − are un i t  func t ions.
The accurate solution to Eq. (6), considering that, 

at x = 0, the beam is rigidly fixed, will be as follows: 

 

(11)

Let us consider a case when, at Sx L= , the 
beam is rigidly fixed. In this case, the conditions   
w(Ls)=0, w'(Ls)=0 shall apply, i.e.:

Whence it follows that:
   

(12)

Thus, if q P x( ),1  and the ends of the 
beam are rigidly fixed, then the w(x), Mx, and Qx 
expressions, at the unit value of the load P and C1, C2  
in the form of Eq. (12), will be as follows:
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(13)

If, at sx L= , the beam has a hinged support, then the conditions ( ) 0, ( ) 0s sw L w L′′= =  shall apply, 
i.e.:

Whence it follows that:
  

(14)
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In this case, the w(x), Mx, and Qx expressions, 
at the unit value of the load P, will take the form of 
Eq. (13) with account for Eq. (14).

If the load is represented by concentrated force
F(kN), applied to point x=ɑ1, then

where δ(x-ɑ1) is a delta function; F=Pl1; l1=x2-x1  is 
some small quantity. 

In this case,w(x), Mx, and Qx will take the form of 
Eq. (13) and C1, C2 in the form of Eq. (12) if both ends 
of the beam are rigidly fixed, or Eq. (14) if, at х=0, 
the beam is rigidly fixed, and at x=Ls, the beam has 
a hinged support. 

δ δ

When the load is represented by the moment of 
a couple of forces, we have the following:

where F1 (kN);

In this case, considering that, at х=0, the beam 
is rigidly fixed, the accurate solution to Eq. (6) will 
be as follows:

3 2

1 2 1

4 3 2
1

1 2 1 2

3 2
4 4

1 2 1 2 2

1 2 1
2

1
1 2 1 2

2 2
1 2

,at 0 ;
6 2

( )( ) ,at  ;
24 6 2

1 [( ) ( ) ] ,at ,
24 6 2

( ),at  0 ;
( )  ( ), at ;

2
( ) ( )

2 2

s

x

x xC C x x

x x x xw x C C x x x
EI

x xx x x x C C x x L
EI

EI C x C x x
x xM EI C x C x x x

x x x x


+ ≤ ≤


−= + + ≤ ≤




− − − + + ≤ ≤


− + ≤ ≤

−
= − − + ≤ ≤

 − −
− − 
 

1 2 2

1 1

1 1 1 2

1 2 1 2

( ) at ,

,at 0 ;
   ( ) ,at  ;

[( ) ( )] ,at  .

s

x

s

EI C x C x x L

EIC x x
Q x x EIC x x x

x x x x EIC x x L









− + ≤ ≤


− ≤ ≤
= − − − ≤ ≤
− − − − − ≤ ≤

1
1 1

2

3
1 2

4

2 1 1 4 3 1

( )
( ) ;

( )

( )
( ) ;

( )
; .

u x x
F x P

u x x

u x x
F x P

u x x
x x l x x l

− − 
− δ − α = −  − 

− − 
δ − α =  − 

− = − =



47

(15)

If, at sx L= , the beam is rigidly fixed, then 
w(Ls)=0, w'(Ls)=0 , i.e.

Whence it follows that:

Thus, under the action of the unit load 
represented by the moment of a couple of forces and 
with the ends of the beam rigidly fixed, with account 
for Eq. (16), we obtain the following expressions for 
w(x), Mx, and Qx:
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If, at sx L= , the beam has a hinged support, then the conditions ( ) 0,sw L =  ( ) 0sw L′′ =  shall apply, 
i.e.:

4 4 4 4 3 2
1 2 3 4

1 2
( ) ( ) ( ) ( ) 0;

24 24 24 24 6 2
s s s s s sP L x L x L x L x L LC C

EI
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2 2 2 2
1 2 3 4

1 2
( ) ( ) ( ) ( ) 0.

2 2 2 2
s s s s

s
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EI
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− + + − + + = 
   

Whence it follows that:
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2 1
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 − − − −
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(18)

In this case, w(x), Mx, and Qx, at the unit value of 
the load P , with account for Eq. (18), will take the 
form of Eq. (17).

Results
Let us suppose we have a single-disc frame 

(Figure 1). At l=6.0 m, F = 16kN, and EJ=const , it 
is required to determine the functions of deflection, 
rotation angles, and internal forces M,Q, N.

The frame is a statically indeterminate 
system. Let us determine the degree of its static 
indeterminacy nst=3K-H=3.1-2=1, where K is the 
number of closed circuits, H is a single hinge. The 
frame has a rigid joint C and is constrained. The 
degree of its kinematic indeterminacy is as follows: 
nk=nj+ni=1+0=1, where nj is the number of rigid joints, 
nl is the number of linear connections. Therefore, 
the calculations using the force method and the 
calculations using the displacement method are 
characterized by the same labor intensity. At first, 
let us analyze the frame using the analytical method 
in the form of the force method. 

Under the assumptions taken, deflection of 
joint С of the frame is equal to zero. Therefore, 
by neglecting the impact of longitudinal forces on 
rod bending and introducing a dummy support 
in the cross-section С , we can switch from the 
constrained frame to a structural model in the form 
of a continuous beam with span L=2l (Figure 3а).

By removing the dummy support, we will replace 
its action on the beam with an unknown reaction X1  
and consider the obtained main system of the force 
method. The differential equation of the deflection 
curve of the beam under the action of the unknown 

reaction X1 and concentrated load F will be as 
follows:                                                                

                                                    

The required function of deflection is determined 
as follows: 

where the Ѱ1(x) and Ѱa(x) functions have the following 
form:

 

In what follows, the                           

symbol denotes the spline function.
The Ѱ i (x) function integration constants, 

calculated for different boundary conditions (1 – rigid 
support, 2 – hinged support, 3 – free edge), are given  
in Table 1.

IV
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The integration constants of these functions 
are determined based on Table 1, following 
boundary conditions 2-2, corresponding to hinge 
fixing of the beam on supports A and B, Ѱ1= Ѱ''1 =0;  
Ѱа= Ѱ''а =0; at х=0 and х=L. D1=–0,5; D2=D4=0; D3=9;  
  

                   Then, Eq. (19)  takes the following form:

The unknown reaction of the dummy support X1  
can be determined based on the fact that there is no 
defection, W(6)=0, by solving the following equation:  
X1Ѱ1(6)-FѰa(6)=0 Then:

By differentiating the obtained function of 
deflection w(x) of the dummy beam, we obtain 
analytical expressions for the functions of rotation 
angles, bending moments, and transverse forces:

Having calculated their values in the design 
sections at х=0, х=3±Ɛ, х=6±Ɛ, and х=12, where  Ɛ→0, 
we construct M and Q diagrams in the continuous 
beam (Figures 2a, 2b), which can be transferred to 
the frame (Figure 3). The diagram of longitudinal 
forces N is constructed based on the Q diagram, 
assuming the equilibrium of the joint C. The diagrams 
of internal forces, obtained using the analytical 
method, correspond exactly to the results of the 
frame analysis using the classical force method and 
displacement method, and are represented below in 
Figure 3.

Due to the use of the mathematical apparatus of 
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Table 1. Integration constants of the function Ѱi(x) 
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Figure 1. Single-disck frame Figure 2. Structural model in the form of a continuous beam

Figure 3. Diagrams of forces
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on finite displacements in the structure is equal to 
the sum of the works of external forces on finite 
displacements. This principle makes it possible 
to apply the general approach to the analysis of 
statically indeterminate structural models, using the 
proposed analytical method unifying the classical 
displacement method, force method, and combined 
method on a single platform. 

The proposed analytical method not only 
simplifies the analysis of statically indeterminate 
rod systems but facilitates significantly computing 
programming and analysis of the obtained  
results.

generalized functions, all expressions of the required 
functions of deflection w(x), rotation angles w(x), 
bending moments M(x) , and transverse forces Q(x) ate 
obtained in the closed analytical form with no need to 
construct and multiply diagrams of bending moments 
by Mohr’s equation in individual rods of the main 
system with the subsequent addition of the results. 

Conclusions
For rod systems (beams, frames, trusses, 

combined structures), a mathematical model of 
deformation represents a system of linear algebraic 
equations, obtained based on the unified principle: 
in equilibrium, the sum of the works of internal forces 
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Аннотация               
Для расчета статически неопределимых стержневых систем обычно используют классический метод 
перемещений и заранее подготовленные таблицы для двух типов стержней основной системы. Математически 
корректное представление локальных нагрузок с помощью обобщенных функций позволяет найти точное 
решение дифференциального уравнения равновесия балки от воздействия произвольной поперечной нагрузки. 
Целью работы было получение аналитических выражений для функций прогибов, углов поворотов, поперечных 
усилий и изгибающих моментов от четырех видов локальных нагрузок для балок с различными краевыми 
условиями, чтобы затем использовать точные решения в методе перемещений. Методы: Предлагается 
аналитический вариант метода перемещений для расчета стержневых расчетных схем. Для балок, находящихся 
под действием различных видов поперечной нагрузки (равномерно-распределенной, сосредоточенной силы и 
пары сил), получены точные аналитические решения для функций прогибов, изгибающих моментов и поперечных 
сил при различных типах закрепления концов балки. Это удается сделать потому, что сосредоточенную 
нагрузку и нагрузку в виде момента силы можно задавать с помощью единичных столбчатых функций. Путем 
преобразования интегралов Мора методом интегрирования по частям показано, что система канонических 
уравнений метода перемещений получена на основе принципа Лагранжа. Результаты: На примере расчета 
статически неопределимой рамы показана эффективность предлагаемого аналитического метода по сравнению 
с классическим методом перемещений.    

Ключевые слова
Стержневые конструкции, метод перемещений, уравнение изгиба балки, интеграл Мора, математическая 
модель, работа внутренних сил, работа внешних сил, принцип Лагранжа.
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