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Abstract

Introduction: Usually, to analyze statically indeterminate rod systems, the classical displacement method and pre-
prepared tables for two types of rods of the main system are used. A mathematically correct representation of local
loads with the use of generalized functions makes it possible to find an accurate solution of the differential equation for
the equilibrium of a beam exposed to an arbitrary transverse load. Purpose of the study: We aimed to obtain analytical
expressions for functions of deflection, rotation angles, transverse forces, and bending moments depending on four
types of local loads for beams with different boundary conditions, so as to apply accurate solutions in the displacement
method. Methods: We propose an analytical form of the displacement method to analyze rod structural models. For
beams exposed to different types of transverse load (uniformly distributed force, concentrated force, or a couple of forces),
accurate analytical solutions were obtained for functions of deflection, bending moments, and transverse forces at different
types of beam ends’ restraint. This is possible due to the fact that concentrated load and load in the form of the moment
of force can be specified by using unit column functions. By transforming Mohr’s integrals, using integration by parts, we
show that the system of canonical equations of the displacement method was obtained based on the Lagrange principle.
Results: Based on the analysis of a statically indeterminate frame, the effectiveness of the proposed analytical method

is shown as compared with the classical displacement method.
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Introduction

Rod systems (beams, frames, trusses, combined
structures) are widely used in the construction of
various structures (Babanov, 2011; Ignatyev, 1979;
Leontyev et al., 1996). To perform stress-strain
analysis of such structures, the displacement method
is usually used (llin et al., 2005; Maslennikov, 1987;
Maslennikov et al., 2020).

Currently, almost all structural calculations are
performed with the use of computer technologies,
which makes it possible to automate the process
and ensure a quite high accuracy of the calculations
(Akimov and Mozgaleva, 2014; Karpov, 2006, 2010,
2011; Kobelev, 2018).

It is not difficult to obtain an accurate solution of
the differential equation for the equilibrium of a beam
exposed to distributed load (Korn and Korn, 1974;
Smirnov, 1967). However, obtaining an accurate
solution for beams exposed to local loads mentioned
above, described by delta functions, presents
particular mathematical difficulties (Belostochny,
1999; Korneyev, 2011; Mikhailov, 1980). When a
concentrated load is described by delta functions,
it means that the load is applied to the point, and
that is impossible in real practice. In the course
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of structural calculations for structures having
various irregularities or exposed to local loads, the
mathematical apparatus of the theory of generalized
functions is widely used (Alyukov, 2011, 2012;
Belostochny, 1999; llin et al., 2005; Kobelev, 2018;
Kobelev and Lukashevich, 2020a, 2020b; Mikhailov,
1980; Mikhailov et al., 1990). To specify correctly the
location of stiffeners reinforcing a shell, Karpov (llin
et al., 2005) introduced special unit column functions
equal to the difference between two unit functions
and showed how to describe local loads applied to
a small area, by using those functions. In this case,
finding an accurate solution of the equation for the
equilibrium of a beam exposed to local loads does
not present any challenges (Belostochny, 1999;
Korneyev, 2011; Mikhailov et al., 1990).

Analytical displacement method

Let us examine in detail the essence of the
displacement method used to analyze statically
indeterminate frames (Babanov, 2011; Ilin et al.,
2005; Maslennikov, 1987; Maslennikov et al., 2020).
In the analysis of frame systems, to obtain the main
system of the displacement method, the following
additional connections are introduced: angular
connections preventing the rotation of joints in areas
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with no full joints, and linear connections preventing
linear displacements.

After that, in the main system, unit generalized
displacements (angular or linear) are specified in the
direction of the introduced connections, and then, in
sequence, reactions in these connections from the
displacements and external load (force factors) are
determined based on conformity of the main system
to the specified one.

If we denote these reactions by Ty , and unknown
generalized displacements by Z then overall
reactions in the j” introduced connection in the
system with » unknown quantities will be equal to

Zr‘f i e \where r.. is the reaction in the k"
connect|on from the external load.

In the displacement method, the sum of reactions
in the additional connections from the displacement
of these connections and the external load is equal
to zero, i.e.:

r.Z. +r,=0.
;k/ i e (1)

n

Z Ty Z/

Here, ‘o is the sum of the works of internal
forces on virtual displacements; r,,. is the sum of
the works of external forces on virtual displace-
ments.

Since reactions in additional connections act in
the direction of the specified unit displacements, then
the work of internal forces on these displacements
is positive, and the work of external forces on
virtual displacements, in the direction of additional
connections preventing the displacement of joints
of the main system, is negative. Therefore, the
main system of the displacement method is based
on the following: in equilibrium, the work of the rod
system’s internal forces on virtual displacements
is equal to the work of external forces on virtual
displacements, i.e. the displacement method uses
the same idea as the Lagrange principle of virtual
displacements.

The main system of the displacement method
consists of individual rods, having uniform cross-
section, of two types: rigid support — rigid support
and rigid support — joint.

These rods are statically indeterminate beams,
analyzed in structural mechanics by using the force
method at various transverse loads, with their ends
analyzed in terms of unit displacements. That is why,
when performing calculations with the displacement
method, pre-prepared tables are used (Maslennikov,
1987; Maslennikov et al., 2020).

However, to determine the stress-strain state of
statically indeterminate beams, it is possible to find
an analytical solution to the problem by integrating
the differential equation of the deflection curve of
the beam, using not only equilibrium equations
(static relations) but geometric relations (kinematic

relations) and boundary conditions as well.

Let us consider the work of various force factors
on corresponding displacements. If a force factor is
transverse load ¢(x), which may be represented by
distributed load, concentrated force, or the moment
of a couple of forces, it does work on displacements
w(x), i.e. the work of the load is equal to g(x)w(x).

If a force factor is bending moment

M, =EJx,(x) | then it does work on displacement

X, =—w (x) , which is a function of the curvature
of the elastic line of the beam, i.e. the work of the
moment is equal to M y,(x).

If a force factor is transverse force Q , then it does
work on displacement, which is the angle of cross-
section displacement that, due to its smallness, is
replaced by tangent, i.e. the work of the transverse
load is equal to Q w'x).

It would be logical to think that the work of the
force on some displacement is always positive.
However, in structural mechanics, it is believed that it
can be negative if the direction of the force does not
coincide with the direction of virtual displacements.
Therefore, Eq. (1) takes the plus sign.

In the classical displacement method, the
coefficients of the unknown quantities and the free
terms of the system of canonical equations are
determined based on the equilibrium of the cut-
off parts of the main system, containing additional
angular and linear connections. If we use the
theorem of reciprocal reactions and displacements
(Babanov, 2011; Maslennikov, 1987), then the
coefficients of the unknown quantities in Eq. (1) can
be determined by Mohr’s equation:

s=1

I oMo
—— dx, @)
|75

s

where m is the number of integration sections
along the entire frame for a rod with length Z_, with
constant stiffness EJ; M| is the bending moment in
the main system of the displacement method at the
section [0, L] from the unit displacement of the £
introduced connection; ' is the bending moment
in the main system of the displacement method
at the section [0, L] from the unit displacement of
the j” introduced connection. Here, M].”=—EJJ. 9" (%),
M "=-EJ,p" (x). Therefore:

W () = Z,0,(x), W () = Z,9,(x).

The free terms of the system of canonical
equations of the displacement method are also
determined by Mohr’s equation:

__Zf Mg de =
L 3)
> [or(x)Mydx,

s=1 ¢
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where M) s the bending moment in the main
system of the displacement method at the section
[0, L] from the specified load.

By substituting the moments in Eq. (2), we obtain
the following:

b=k = JAEJQ)’Y

1y
s=1 ¢

¢/r( ) dx, (4)

which is the work of internal forces from the
unit displacements in the direction of additional
connections. Based on the theorem of reciprocal
virtual works, ¢ (x) =¢"(x). Then:

oll

rZ, = ZJEJ@ #(x)Z,dx=—"=,

s 0 j
1 L.\'

where H:_Jqudx:
2 0
- j EJ Z9"(X)p" (x)Z dx.
Thus, is the sum of the works of

Z” W)
=

internal forces on virtual displacements.
By transforming the integral ¢

s

0" ()M 2 dx

0

with the double integration by parts, we obtain

dZM() d2M0
d i £ _
e =g, (x)dx.  Since, 2 q,
L.\ L.\
then: j@;(x)Mﬁdx:—jqcp,(x)dx.
0 0
Therefore:
o
- :gz_“[—qugb ]a’x— ZIqqﬁ )dx, (5)

jos=lo

which is the work of external forces on finite
displacements.

Thus, the system of canonical equations of the
displacement method (mathematical model for the
deformation of rod systems) is obtained under the
following condition: in equilibrium, the work of the
rod system’s internal forces on finite displacements
is equal to the work of external forces on finite
displacements. The same principle of developing
a mathematical model for the deformation of rod
systems is applied when the force method is used.

In the classical form of the displacement method
for the formation of a system of canonical equations,
it is necessary to construct in the main system, using
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corresponding tables, diagrams of bending moments
from the sequentially specified unit displacements
in the direction of additional connections M’ , where
i=1,2,...n , and a diagram of bending moments M’
from the external transverse load specified in a
particular way. For instance, if the concentrated load
is described by delta functions, then the function
of bending moments M(x)=—EJw''(x) contains
points where the smoothness of the function is lost
and sometimes breaks of continuity occur upon
differentiation. If the function w"(x) is characterized
by discontinuity, then w'(x) does not exist, and
the function w(x) does not satisfy the equation for
the equilibrium of a beam in bending EJw"=q. The
diagrams mentioned are constructed for a beam
fixed at the ends in a particular way.

In the course of the study, for different types of
fixing the ends of a beam exposed to transverse
load (uniformly distributed force, concentrated force,
or the moment of a couple of forces), accurate
analytical solutions were obtained for the function
of deflection w(x). This is possible due to the fact
that concentrated load and load in the form of
the moment of force can be specified by using
unit column functions. In this case, by successive
integration of the equation EJw'"=¢, it is possible
to find deflection in the form of the continuous
differentiable function of deflection w(x), having
derivatives w'(x), w'(x), w'"(x), and w”(x) Besides, to
determine the coefficients of the unknown quantities
Ty and the free terms r, . of the system of canonical
equatlons of the dlsplacement method, there is no
need to construct diagrams of bending moments
M’ and M’, since, due to the obtained analytical
expressions for w(x) and w'(x), the moments
indicated can also be specified in the form of
analytical functions considering the characteristics
of the applied load.

The proposed analytical method not only
simplifies the analysis of rod systems but facilitates
computing programming significantly.

Let us find an analytical expression for deflection
w(x) bending moment M_, and transverse force O
for a beam with span L under the following types of
transverse load ¢:

1. Uniformly distributed along the entire length of
the beam /0, L/,

2. Uniformly distributed along a part of the beam
[x, x.J;

3. Concentrated, applied to some point a,;

4. Moment of a couple of forces.

We consider two types of fixing the beam ends:
rigid support at x=0 and x=L ; rigid support at x=0
and hinged support at x= L The w(x), M, and
Q. expressions are determlned at the unit value
of the load and the arbitrary value of EI, where
M =—Ew"(x), Q. =—Ew'".

If I—h—b

0 where b is the width of
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the beam, then q[k_Nj is obtained by
m

multiplying the load q, b( kN j
m

Let us find an accurate solution to the equation for
the equilibrium of the beam:

w =1L (©)

Let the load g=const be uniformly distributed
along the entire length of the beam /0, L J. In this
case, taking into account the boundary conditions at
x=0(w(0)=0, w'(0)=0), the accurate solution to Eq. (6)
will be as follows:

4 3 2

wx)=-=LZ o ol (7)
El24 6 2

The C, and C, constants can be determined based
on the boundary conditions at x=L .
If, at x=L , the beam is rigidly flxed then w(L )=0,
w'(L)=0, i.e.

g L' L L2

——+C,—=+C,—
EI24 6
3 2
4 L +c S+ CoL =0,
EI 6

Whence it follows that:

qL

s

gL o _ 9L ®)
2B’ 2 12EI

C=-

Thus, if the load ¢ is uniformly distributed along

the entire length of the beam /0, L / , and both ends

of the beam are rigidly fixed, then w(x) will take the

form of Eq. (7) with account for Eq. (8) and g=I. The

bending moment M _and transverse force 0, at the
unit value of the Ioad will take the following form:

2

M, =-2 —EI(Cx+C));
2 9)
0. =-x—EIC,.

Let the beam have a hinged support at x=L_. In
this case, the boundary conditions w(L )=0, w”(L) 0,
shall apply, i.e.:

4 3 2
= L5+CLS+CL =0;
EI24 6

q L
420 +C=0.
EI 2

Whence it follows that:

2
Cl__Squ C __q_L5 (10)

S8EI’ *  8EI'

Thus, if the load ¢ is uniformly distributed along
the enitre length of the beam /0, L ], at x=0, it is fixed
rigidly, and at x=L , it has a hinged support, then the
function of deflection will take the form of Eq. (7) with
account for Eq. (10) and the unit value of the load.
The bending moment and transverse force at the unit
value of the load will take the form of Eq. (9) at C, u
C, in the form of Eq. (10).

Let the load be uniformly distributed along a part

of the beam /x1,x2]. In this case, q=Pd(x—4,)

where d(x—4,) =u(x—x) —u(x—x,);
u(x—x)andu(x—x,) are unit functions.
The accurate solution to Eq. (6), considering that,
at x =0, the beam is rigidly fixed, will be as follows:

w(x)=£{(x;j‘)u(x—xl)—(x;jf)u(x—xz)}+ (11)

+C

X
C —.
1 27

x
6

Let us consider a case when, at x=L; , the
beam is rigidly fixed. In this case, the conditions
w(L)=0, w'(L )=0 shall apply, i.e.:

4 4 3 2
LPl&ox)  Eox) +CI£+C2£=O.
EI 24 24 6 2

ﬂ (Ls - xl )3
EI 6

Whence it follows that:

3 2
(L 6x2) }+Cl%+C2Ls =0.

P (Ls_'xl)4 _(Ls_x2)4 _
C = I 2 2 ;
L L(L = %) + L (L, —x,) 12)
(Ls _x1)4 (Ls —X )4
___ P 4 4
* EIP

L L
A

Thus, if ¢=Pd(x—=%,), and the ends of the
beam are rigidly fixed, then the w(x), M, and O,
expressions, at the unit value of the load P and C,C,
in the form of Eq. (12), will be as follows:
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3
X

2
C+C, 2 at 0<x<ux;
6 2

2

4 3
w(x) = %+q%+€2%,a‘[ X, <x<x,;
1 ) A P 2
ﬁ[(x—xl) —(x—x,) ]+Clz+C27,at x,<x<L,

—-EI(Cx+C,),at 0<x<x;
(x—x) (13)

M. = —FEI(Cx+C,),atx, <x<x,;
2 2
)T ) et Cy)atx <x <,
2 2
—EIC,,at 0<x<x;
0. = —(x—x)—EIC,,at x, <x<Xx,;

—{(x=x)—(x=x,)]-EIC,,at x, <x<L_.

If, at x = L_, the beam has a hinged support, then the conditions  W(L,) =0,w"(L)=0 shall apply,

i.e.
4 4 3 2
1{(@—&) _(ZL-x) }Clngg:o;
EI 24 24 6 2
2 2
i (Ls xl) _ (Ls x2) + CILS + C2 — 0
EI 2 2

Whence it follows that:

3
. (LA - x2)2i|;

4

IRVRY IRRY! 2
1= Pz (LS XI) _(LS XZ) _ﬁ(Ls_xl)z'*'
EI’| 8 8 4

(14)

P | (L-x) (L -x)" L , L 9
=— S - ——=(L, —x)+—=(L, —x,) |
? EIL{ 8 8 4(5 ) 4(S 2)
In this case, the w(x), M, and Q_expressions, When the load is represented by the moment of
at the unit value of the load P, will take the form of a couple of forces, we have the following:
Eq. (13) with account for Eq. (14). - _ _ + _
If the load is represented by concentrated force q Fdx= ) +Fo( x~a),,
F(kN), applied to point x=a,, then where F, (kN);
=F5(x—4,)=Pd(x—a,)= u(x—x)—
q ( ) ( ) —ES(X—(XI)=—P ( 1) :
P(u(x —x) —u(x - x,)), u(x—x,)
u(x—x;)—
where d(x-a,) is a delta function; F=Pl; | =x,-x, is Fo(x—a,)=P ;
some small quantity. u(x—x,)
In this case,w(x), M, and Q_will take the form of X, —x =l;x,—x. =1.
Eq. (13) and C, C, in the form of Eq. (12) if both ends S N
of the beam are rigidly fixed, or Eq. (14) if, at x=0, In this case, considering that, at x=0, the beam
the beam is rigidly fixed, and at x=L , the beam has is rigidly fixed, the accurate solution to Eq. (6) will
a hinged support. be as follows:
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: (L-x)'  (L-x)

_ o .
244 EIl(L,-x) (L -x)
B S
Wx)=— +C—+C—(15> C, =+ C,L, =0.
EI (x—x3)4 6 2 2
7 u(x—x;)—
Thus, under the action of the unit load
(x— x4) Y xe—x,) represented by the moment of a couple of forces and
24 4 ] with the ends of the beam rigidly fixed, with account

for Eq. (16), we obtain the following expressions for
If, at x=L, | the beam is rigidly fixed, then w), M, and Q.
w(L)=0, w'(L)=0,i.e.

Whence it follows that: C(Lg-x) | Lg-x) | L-x) (Lg—xy) .
4 4 _ P 2 2 2 2 )
_(Ls_x]) +(Ls_x2) + C]_E][é (Ls*xl)zf(Ls*xz)gf 5
Ea 24 24 + b (Ly—x,) +(Ls — x,)°
EI| (L, =x)' _(L-x)" s T (16)
S24 - S24 (Ls_x1)4+(Ls_xz)4+(Ls_x3)4_([‘s_x4)4+
3 2 c__ P 4 4 4 4
C— L L+ C,—~ L =0; T EIL Ly (Lg—x) —(Lg—x,)’ -
6 2 3 (Ls _x3)3 +(Lg _)54)3

Y 3
—M+C1x—+C2x—,atx1£xSx2;
24E1 6 2
_ 1 x3 x2
w(x) = 24E[[ (x— xl) +(x— x2) 1+C— 5 +C,— > ,atx, S x < xj;
1 3 xz
m[ (x—x) '+ (x—x) +(x- x3) ]+C 5 C27,atx3ﬁxﬁx4;
1 ¥ 52
ﬁ[ (x—x)'+(x—-x) +(x-x) - (x-x,)° ]+C S +C73tx3<x<L

—-EI(Cx+C,),at 0<x<x;;

_ 2
%—EI(CIX+C2),21‘[JC1 <Xx<Xx,;

(17

— 2 — 2
[(x 2x1) _ 2x2) }—EI(C1x+C2),atx23x£x3;

2 2 2
Gox)  (rmx) (o) —EI(Cx+C,),at x; < x < x,;
2 2 2

2 2 2 N2
(x le) _b 2"2) _b 2"3) e 2’“1) —EI(Cx+C,)atx, <x<L.

—EIC,at 0<x<Xx;;
(x—x,)—EIC,,at x, <x < x,;
0= [(x=x)—(x—=x,)]-EIC,,at x, <x < x;
(x=x)—(x—x,)—(x—x;)— EIC,,at x; < x < x;
(x=x)—(x—x)—(x—x;)+(x—x,)—EIC,,atx, <x< L.
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If,at x=1L
i.e.:

, the beam has a hinged support, then the conditions W(L,) =0,

w'(L,)=0 shall apply,

_ 4 3 2
L) }+c]g+cL =0;

Pl L-x)', (L-x)' (L-x

EIl 24 24 24 24
Pl (L-x) (L-x) L-x)

EI| 2 2 2

Whence it follows that:

_ Lzs (Ls — xl)2

_ 2
v }+C1LS +C,=0.
2

_ Li(Ls _x4)2

+ Li (LS‘ — x2)2

LD -x)

_ -3P 2 2 2 .
1 2E[Li +(Ls—x1)4 _(Ls—x2)4 _(Ls—x3)4 +(Ls—x4)4 > (18)
12 12 12 12
C =—C Ls — (L _xl) (Ls _‘x2)2 + (Ls — x3)2 _ (Ls — x4)2 .
EI 2 2 2

In this case, w(x), M, and Q_ at the unit value of
the load P, with account for Eq. (18), will take the
form of Eq. (17)

Results

Let us suppose we have a single-disc frame
(Figure 1). At [=6.0 m, F = 16kN, and EJ=const , it
is required to determine the functions of deflection,
rotation angles, and internal forces M,Q, N.

The frame is a statically indeterminate
system. Let us determine the degree of its static
indeterminacy n =3K-H=3-1-2=1, where K is the
number of closed circuits, H is a smgle hinge. The
frame has a rigid joint C and is constrained. The
degree of its kinematic indeterminacy is as follows:
n,=n+n=1+0=1, where n, is the number of rigid joints,
n, is the number of linear connections. Therefore,
the calculations using the force method and the
calculations using the displacement method are
characterized by the same labor intensity. At first,
let us analyze the frame using the analytical method
in the form of the force method.

Under the assumptions taken, deflection of
joint C of the frame is equal to zero. Therefore,
by neglecting the impact of longitudinal forces on
rod bending and introducing a dummy support
in the cross-section C , we can switch from the
constrained frame to a structural model in the form
of a continuous beam with span L=2/ (Figure 3a).

By removing the dummy support, we will replace
its action on the beam with an unknown reaction X,
and consider the obtained main system of the force
method. The differential equation of the deflection
curve of the beam under the action of the unknown
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reaction X, and concentrated load F will be as
follows:

EWY (1) = X0, —F3,.

The required function of deflection is determined
as follows:

EJw(y) =Xy, () — Fy, (),

where the ¥ (x) and ¥ (x) functions have the following

form:

3 2
+D, Xy
3! 2!
(x_xi)J .
EJ3! ° (19)
3 2

X X
Wa(x)_clg-'—cza—‘r

v,(x) =D

Dx+D, +

_ 3
Cix+C, +(x3—'al)%

In what follows, the
Oat x <y,
_J:
lat x> x,
symbol denotes the spline function.
The ¥, (x) function integration constants,
calculated for different boundary conditions (1 — rigid

support, 2 — hinged support, 3 — free edge), are given
in Table 1.
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Table 1. Integration constants of the function ¥(x)

Sl;?fgrt D, D, D, D, Support x=/
2 2
1 _d_'(l+ﬂJ 'xidi 0 0 1
I I?
3d, (. d d(d’
1 — | l-== -+ 5= 0 0 2
21 3/ AW
d’ d’
2 —(3-4d, 0 Zi(d =5 0 1
212( 1) 4 ( i )
d, d.x.
2 - 0 It l+ d 0 2
1 (1+d,)
1 -1 X; 0 0 3
2
3 0 0 —% —(2+x,) 1

where d1 =1—x,» .

The integration constants of these functions
are determined based on Table 1, following
boundary conditions 2-2, corresponding to hinge
fixing of the beam on supports 4 and B, ¥ = V" =0,
¥ =¥" =0, atx=0and x=L. D,=—0,5; D,=D =0; D,=9;

3 63

CIZ—Z; C2:C4:O; C3:?.
Then, Eq. (19) takes the following form:
x’ (x—6)
(X)=——+9x+—,
Vi) == 3

(x=3)
=,

'(x)——x—3+@x+
Ve 8 8 3!

The unknown reaction of the dummy support X,
can be determined based on the fact that there is no
defection, W(6)=0, by solving the following equation:
X,V (6)-FY¥ (6)=0 Then:

x, = p¥a©® 16127y
v,(6)  12-36

By differentiating the obtained function of
deflection w(x) of the dummy beam, we obtain
analytical expressions for the functions of rotation
angles, bending moments, and transverse forces:

EJy(x) = EJW'(x) =11V{(x) - 16V (x) =

6 8 5
(x-3)

2
M=-EJw"(x) = 16y" (x)-11y", (x)=

16[—%—@—3)&—11[—§+(x—6)i;

QO=EMW"(x)= 16[%—U(x—3)} -

2

2 2
1{9_x_+m
4

E(21—x2)-i-
2 }1

ll[%—U(x—@il.

Having calculated their values in the design
sections at x=0, x=3+€, x=6+E, and x=12, where £€—0,
we construct M and Q diagrams in the continuous
beam (Figures 2a, 2b), which can be transferred to
the frame (Figure 3). The diagram of longitudinal
forces N is constructed based on the Q diagram,
assuming the equilibrium of the joint C. The diagrams
of internal forces, obtained using the analytical
method, correspond exactly to the results of the
frame analysis using the classical force method and
displacement method, and are represented below in
Figure 3.

Due to the use of the mathematical apparatus of
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generalized functions, all expressions of the required
functions of deflection w(x), rotation angles w(x),
bending moments M(x) , and transverse forces Q(x) ate
obtained in the closed analytical form with no need to
construct and multiply diagrams of bending moments
by Mohr’s equation in individual rods of the main
system with the subsequent addition of the results.

Conclusions

For rod systems (beams, frames, trusses,
combined structures), a mathematical model of
deformation represents a system of linear algebraic
equations, obtained based on the unified principle:
in equilibrium, the sum of the works of internal forces

on finite displacements in the structure is equal to
the sum of the works of external forces on finite
displacements. This principle makes it possible
to apply the general approach to the analysis of
statically indeterminate structural models, using the
proposed analytical method unifying the classical
displacement method, force method, and combined
method on a single platform.

The proposed analytical method not only
simplifies the analysis of statically indeterminate
rod systems but facilitates significantly computing
programming and analysis of the obtained
results.
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AHHOTauunA

[na pacyeta cTaTU4eckn HeonpeaenMMbIX CTEPXKHEBbLIX CUCTEM OOLIYHO MCMOMb3YIOT KNacCuyeckuin MeTos
nepemMeLleHnin 1 3apaHee NOAroTOBMEHHbIE Tabnuubl ANSA ABYX TUMOB CTEPXHEN OCHOBHOM cMCTeMbl. MaTemaTuiecku
KOppeKTHOEe npeacTaBrieHne NnokarnbHbIX Harpy3ok ¢ NOMOL b0 0606LLEeHHbIX (PYHKLUIN NO3BONAET HAaWTN TOYHOE
peleHne anddepeHLmanbHOro ypaBHeHNsa paBHoBecusi 6anku OT BO3AeNCTBUSI NPOU3BOSIbHOM NOMNEPEYHON Harpy3Kku.
Llenbto paboTbl 6bIN0 NONyYeHne aHanUTUYECKUX BbipaXkeHn Ans OyHKUMIN Npornbos, yrinos NOBOPOTOB, MONEPEYHbIX
yCuUnun n narnbarLmx MOMEHTOB OT YeTbipex BUAOB MOKarbHbIX HAarpy3ok Ans 6anok ¢ pasnuyHbIMK KpaeBbiMy
ycnosuamu, 4tobbl 3aTem MCNONb30BaTh TOYHbIE peleHns B metode nepemelwerHnin. Metoabl: MNpegnaraetca
aHanNUTMYeCKUn BapmaHT MeTo4a nepemMeLLeHnii Ans pacyeTa CTEPXXHEBBIX pacyeTHbIX cxeMm. [1na 6anok, HaxoAsaLWmxcs
noa AerCTBMEM PasnnyHbIX BUAOB NONEPEYHON Harpy3ku (paBHOMEpPHO-pacnpeneneHHon, COCpeAoTOYEHHON CUMbl 1
napbl Cun), NONyYeHbl TOYHbIE aHANUTUYECKME pelleHns AN pyHKUMn Npornbos, n3rnbaroLmx MOMEHTOB U NOMEPEeYHbIX
CUI Npu pasnu4YHbIX TUNax 3akpenneHnsa KoHuoB 6anku. 3TO yaaeTcs caenaTb MOTOMY, YTO COCPEAOTOYEHHYO
HarpysKy u Harpysky B BUAe MOMEHTa CWMbl MOXHO 3afaBaTb C MOMOLbIO €AMHNYHBIX cTonb4yaThix pyHKumn. MyTem
npeobpasoBaHna nHTerpanos Mopa MeTogoM MHTErpMPOBaHUSA MO 4YacTAM MOKa3aHo, YTO CUCTEMa KaHOHUYECKNX
ypaBHEHUI MeToAa NepeMeLleHnii nonyyeHa Ha ocHose npuHuuna farparnxa. PesynbTaTthl: Ha npumepe pacyeta
cTaTUYeCcKn Heonpeaenumon pambl NokasaHa apHEKTMBHOCTL NpeAnaraemMoro aHannTM4eckoro MeToAa no CPaBHEHMIO
C KNnaccu4ecknm MeToA0M NepemMeLLeHNii.

KnroueBble cnoBa

CTepxxHeBble KOHCTPYKLUKN, METOA NepeMeLLeHnin, ypaBHeHne narnba 6anku, nnterpan Mopa, matemaTtudeckas
Mofernb, paboTa BHyTPEHHUX cun, paboTa BHELHUX cui, NnpuHumn Jlarpanxa.
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