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Abstract

Introduction: The paper presents new results of studies on the anisotropy of fiber materials with cylindrical anisotropy,
which include filament-wound composite materials reinforced with various fibers. Methods: We suggest a mathematical
solution to a fourth-order partial differential equation in polar coordinates with two variables for an orthotropic anisotropic
body. To solve this equation, we converted it into Cartesian coordinates and presented the stress function as a sum of
polynomials. Results and Discussion: As a result of the solution, we obtained two relationships between the elastic
constants in the principal directions of anisotropy (so-called elasticity parameters). One of them was obtained for the first
time, and the other results from the solution of the anisotropy problem for an orthotropic curved body, suggested by S. G.
Lekhnitsky. The obtained solution does not contradict Lekhnitsky’s solution. Thus, in our opinion, orthotropic materials can
be divided into two groups. In one group, when shifting from the radial to the tangential direction, the elastic constants take
on extreme values when the layers are at angles of 0, 60, and 90°. In the other group, there is no intermediate extreme
value and the elastic constants take on extreme values when the layers are at angles of 0 and 90°. The obtained results
can be applied in the development of new high-strength composite materials and new technologies for the design and
manufacture of building structures, as well as in the design of high-strength structures from synthetic composite materials.
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Introduction

Filament-wound composites reinforced with
fibers of carbon, boron or basalt, metallic or glass
fibers, and wood as a natural composite material
can be classified as anisotropic fiber materials with
cylindrical anisotropy.

In nature, composite materials are formed in a
natural way, and, according to the basic principles of
bionics, their strongest fibers extend in the direction
of principal stresses and strains.

By studying natural composite materials, material
engineers design materials with pre-determined
properties.

Fiber-glass products (including those made
of filament-wound fiber-glass), similar to such a
natural composite as wood with its annual rings, get
widespread use. Wood, as well as fibers in bones of
humans and animals, are often taken as prototypes
when creating new advanced high-strength materials.

Such materials are anisotropic. Their physical and
mechanical properties vary throughout the volume
and in different directions, depending on the required
performance of the material.

Many researchers in Russia (Ye. K. Ashkenazi,
A. |. Kuznetsov, S. G. Lekhnitsky, A. N. Mitinsky,
A. A. Pozdnyakov, A. L. Rabinovich, Yu. S. Soboleyv,
and others) and abroad (C. S. Grove, A. Jlinen, R.
Keylwerth, H. Kubler, D. V. Rosato, and others)
have been studying the anisotropy of elasticity and
strength in anisotropic materials.

Based on the analysis of literature sources,
we established that until recently there was no
mathematical relationship found between the elastic
constants in the principal directions of anisotropy (in
contrast with isotropic bodies). According to some
researchers (Ye. K. Ashkenazi, Yu. S. Sobolev, and
others), this is one of the main reasons for obtaining
conflicting experimental and theoretical results. This
prompted new studies on elasticity and strength in
anisotropic materials and, in particular, composite
materials of natural and synthetic origin.

Over the last 15-20 years, new promising data
were obtained for anisotropic materials. In most cases,
the insights of 50—-70 years ago are still used when
conducting research or solving practical problems.

In this paper, we present the results of our
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theoretical studies on the anisotropy of elasticity in
filament-wound composite materials, based on the
well-known laws of mathematics and mechanics,
and compare those with the results obtained much
earlier by Ye. K. Ashkenazi, S. G. Lekhnitsky, Yu. S.
Sobolev, and others.

Methods

The following fourth-order homogeneous partial
differential equation in polar coordinates for an
orthotropic body, known in the theory of elasticity of
an anisotropic body (Ashkenazi, 1978; Lekhnitsky,
1977) was taken as the basis for theoretical studies:
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where E, E, — the moduli of elasticity in tension
(compression) in the principal directions;

v, G, — the Poisson’s ratio and shear modulus of
elasticity.

To solve the problem, Eq. (1) was converted into
Cartesian coordinates, which is too cumbersome
and, therefore, is not presented in the paper.

To solve Eq. (1) in the plane problem for a circular
plate with cylindrical anisotropy, the stress function was
taken as a sum of polynomials (Kurdyumov, 1946):

F=2x 1), )
i=1
where f, (y) — unknown functions satisfying
differential Eq. (1).
Results

As a result of solving Eq. (1) with the substitution
of the corresponding derivatives of stress function (2),
after transformations, second-order algebraic Eq. (3)
was obtained, the roots of which are as follows:
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where k* =E /E.

One of the roots (4) can be found in the
monograph by S. G. Lekhnitsky (1957),
solving the bending problem in an anisotropic
curved bar (an orthotropic bar with cylindrical
anisotropy), where Eq. 24.7 on page 98 is written
as follows:

E E
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By substituting the known relationships into Eq.
(6), we obtain the same expression (4) for the first
root, which does not contradict the relationship
between the elastic constants, obtained by S. G.
Lekhnitsky. However, we also obtained expression
(5), which we could not find in any of the known
publications. Thus, we can conveniently divide
orthotropic anisotropic materials with cylindrical
anisotropy into two groups. In the first group of
materials satisfying condition (4), the modulus of
elasticity changes from 0 to 90° (from the radial
to the tangential direction) passing through an
intermediate extremum point when the layers are at
an angle of 30° to the force line.

In the second group, there is no intermediate
extremum point and the modulus of elasticity
changes from 0 to 90° smoothly.

This conclusion can be reached by analyzing the
equations we obtained for the elastic constants:
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According to our solution, the coefficient B,
irrespective of k’= E /E , will be equal to 2 (as in the
monograph by S. G. Lekhnitsky (1957)), i.e. it will
be exactly the same as in an isotropic bar, and this
does not contradict the conclusion drawn by S. G.
Lekhnitsky:
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Then the stresses in an orthotropic cylindrically
anisotropic curved bar can be calculated using the
equations in Lekhnitsky’s notations (1957):
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During calculations for the second group of
anisotropic materials by Eqgs. (7) and (8), we
should note that the coefficient g depends on k?, in
contrast with the first case: this follows from Eq. 24.7
(Lekhnitsky, 1957) and the second root of algebraic

Eq. 3).
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The equations to calculate the elastic constants
at the second root will take the following form:
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The ratios of the elastic constants (conventionally
called the elasticity parameter) depend on the
degree of accuracy in determining each of the
constants. The Poisson’s ratio is rather small.
Besides, the authors of methods for its determination
(Ye. K. Ashkenazi, A. N. Mitinsky, Yu. S. Sobolev)
acknowledge that when the composite layers are
at an angle of 45° there is an inaccuracy in the
determination.

The obtained values of the anisotropy parameters
make it possible to eliminate this drawback and
facilitate the solution of differential Eq. (1).

Therefore, the calculation of stresses for
orthotropic anisotropic bodies with cylindrical
anisotropy, performed according to Egs. (7) and
(8) with the use of the coefficient = 2 in one case

1+ 2
and #=2=3 in the other case, depends on the
ratio between the moduli of elasticity E,/ E_= k? for
a particular anisotropic material.

In this case, it will be necessary to determine
in advance which group the anisotropic material
belongs to.

Discussion.
characteristics

The extremum properties and the position of
the principal anisotropy planes are of the most
interest when studying the physical and mechanical
properties of anisotropic materials, including
composite materials of natural and synthetic origin.

The analytical dependence of the modulus of
elasticity is known from the theory of elasticity:
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Ye. K. Ashkenazi obtained the following instead
of Eq. (9):
E, 1

Ey cos*0 +b-sin?20 + C-sin®6

This equation can be applied to any plane of
elastic symmetry.

The equation suggested by A. N. Mitinsky (1948)
for an orthotropic body in his notations has the
following form:

EW)
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This equation is similar to the equation for
isotropic materials:
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By equating the first derivative d_a to zero, Ye. K.
Ashkenazi obtained the following: *
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The first two extrema can be found by equating
the factor outside the brackets to zero. Thus, we get
the following:

a,=0%a,=90°

The third extremum of the modulus of elasticity

will be achieved at the following angle:
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or with account for substitution 2.31 (Ashkenazi and
Ganov, 1981):
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For an equally reinforced material (at C = 1), e.g.
plywood, a, = 45°.

The third extremum will be achieved only subject
to the following inequality (Ashkenazi and Ganov,
1981):
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If this condition is not met, the modulus of

elasticity will have only two extrema, as, for instance,
in filament-wound fiber-glass or natural wood in the
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plane of the greatest stiffness (in the direction of the
fibers).

The modulus of elasticity Ex’ of an orthotropic
anisotropic material in an arbitrary direction can be
determined by expression 2.28 from the monograph
by Ye. K. Ashkenazi (1978).

For an arbitrary direction of the X’ axis, with
account for the known ratio between the direction
cosines:

n12+112+m12 =1.

Ye. K. Ashkenazi obtained the values of the
direction cosines:
1)atn, =0;
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Our solution (Gluhih et al., 2016) coincides with
this one.

Conclusions

1) The found mathematical relationship between
the elastic constants in the principal directions of
anisotropy simplifies the solution of elastic problems
for elastic fiber composite materials.

2) Experimental determination of elastic constants
can be streamlined.

3) Using the suggested solution, with account
for the tensorial nature of elasticity and strength
characteristics, it will be possible to study the
strength of composite materials considering the
angle of the reinforcing fibers.
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3A0AYHA AHU3OTPOMNUKN YINPYTOCTU U MPOYHOCTU BOJIOKHUCTbIX
AHU3OTPOMNHbIX MATEPUAJIOB
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AHHOTauunA

B cTatbe npuBegeHbl HOBblE MaTepuarnbsl NCCNeA0BaHNIN aHM30TPOMMUM BOFTOKHUCTBLIX MaTepurarnos C LMAVHAPUYECKON
aHM30Tponuen, K KOTOPbIM OTHOCATCH apMMPOBaHHbIE Pa3NMYHbIMU BOMTOKHAMW HaMOTOYHbIE KOMMNO3ULNMOHHbIE
maTepuansl. MeToabl: ABTOp AaeT matemaTudeckoe pelieHne anddepeHumnanbHOro ypaBHeHns 4eTBEPTOro nopsaka
B YACTHbIX MPOU3BOAHBIX C ABYMSI NEPEMEHHBLIMU A1 aHU30TPOMHOro OPTOTPOMNHOrO Tena B NOMAPHbLIX KOOPANHATAaX.
[Insa pelweHns aToro ypaBHEHNS NepeBenv B AeKapTOBbl KOOPANHATLI M UCNOMb30Bany PyHKUMIO HAaNps>KeHUn B BUAE
CyMMbl NonMHomoB. Pe3ynbtaTbl n 06cyxaeHua: B utore pewerHns 6binv nony4yeHsl ABa COOTHOLLEHUS MEXAY
NMOCTOSIHHBIMM YNPYrOCTU B IMaBHbIX HAMpaBleHUAaX aHU30TPONUN — Tak HasbiBaemble napameTpbl ynpyroctu. OgHo n3
HWX NOMNy4YeHO BNepBble, @ BTOPOE BbITEKAET U3 PELUEHNS 3a4a4m aHN30TPONuM KPUBOMMHENHOIO OPTOTPOMHOrO Tena
C. I llexHuukum, n nonyyYyeHHoe peLleHne emy He NpoTMBopeymnT. Takum ob6pasom, aBTop cuMTaeT, YTO OPTOTPOMHbIE
maTepuansl MOryT 6bITb pasgeneHbl Ha ABe rpynnel. B ogHow rpynne, npu nepexoae OT paananbHOro HanpasreHus
K TaHreHumanbHOMY, NOCTOSHHbIE YNPYroCTV NMPUHMMAIOT 3KCTPEMAarbHble 3HAYEHUSA NPy PacnonoXeHun CNoés Mnog
yrnamu 0°, 60° n 90°. B gpyroi, NnpomMexyTOYHOe SKCTpeMarnbHOE 3HA4YeHWe OTCYTCTBYET, U MOCTOSAHHbIE YNPYrocTu
NPUHMMAIOT IKCTPEeMarnbHble 3Ha4YeHNd Npu HaknoHe cnoés nod yrnamu 0° n 90°. Pesynbtathl nccrnegoBaHum
npeacTaBnatoT NHTepec Npu paspaboTke HOBbIX BbICOKOMPOYHbIX KOMMO3ULMOHHBLIX MaTepuarnos, npu paspaboTke
HOBbIX TEXHONOMMIN NPOEKTUPOBAHUSA U U3FOTOBMNEHUS CTPOUTENBHBLIX KOHCTPYKLUIA, BbICOKOMPOYHbBIX KOHCTPYKLUMIA 13
CUHTETUYECKNX KOMMO3ULIMOHHBIX MaTepuarnos.

KnioueBble cnosa

AHU30TPONMS CBOWCTB, KOMMO3NULIMOHHBIE MaTepuarbl, MaTeMaTuyeckas Moaenb, LUNMHAPUYECKN aHU30TPOIMHOE TENo,
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