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Abstract
Introduction: The paper presents new results of studies on the anisotropy of fiber materials with cylindrical anisotropy, 
which include filament-wound composite materials reinforced with various fibers. Methods: We suggest a mathematical 
solution to a fourth-order partial differential equation in polar coordinates with two variables for an orthotropic anisotropic 
body. To solve this equation, we converted it into Cartesian coordinates and presented the stress function as a sum of 
polynomials. Results and Discussion: As a result of the solution, we obtained two relationships between the elastic 
constants in the principal directions of anisotropy (so-called elasticity parameters). One of them was obtained for the first 
time, and the other results from the solution of the anisotropy problem for an orthotropic curved body, suggested by S. G. 
Lekhnitsky. The obtained solution does not contradict Lekhnitsky’s solution. Thus, in our opinion, orthotropic materials can 
be divided into two groups. In one group, when shifting from the radial to the tangential direction, the elastic constants take 
on extreme values when the layers are at angles of 0, 60, and 90°. In the other group, there is no intermediate extreme 
value and the elastic constants take on extreme values when the layers are at angles of 0 and 90°. The obtained results 
can be applied in the development of new high-strength composite materials and new technologies for the design and 
manufacture of building structures, as well as in the design of high-strength structures from synthetic composite materials.
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Introduction
Filament-wound composites reinforced with 

fibers of carbon, boron or basalt, metallic or glass 
fibers, and wood as a natural composite material 
can be classified as anisotropic fiber materials with 
cylindrical anisotropy.

In nature, composite materials are formed in a 
natural way, and, according to the basic principles of 
bionics, their strongest fibers extend in the direction 
of principal stresses and strains.

By studying natural composite materials, material 
engineers design materials with pre-determined 
properties.

Fiber-glass products (including those made 
of filament-wound fiber-glass), similar to such a 
natural composite as wood with its annual rings, get 
widespread use. Wood, as well as fibers in bones of 
humans and animals, are often taken as prototypes 
when creating new advanced high-strength materials.

Such materials are anisotropic. Their physical and 
mechanical properties vary throughout the volume 
and in different directions, depending on the required 
performance of the material.

Many researchers in Russia (Ye. K. Ashkenazi, 
A. I. Kuznetsov, S. G. Lekhnitsky, A. N. Mitinsky, 
A. A.  Pozdnyakov, A. L. Rabinovich, Yu. S. Sobolev, 
and others) and abroad (C. S. Grove, A. Jlinen, R. 
Keylwerth, H. Kubler, D. V. Rosato, and others) 
have been studying the anisotropy of elasticity and 
strength in anisotropic materials.

Based on the analysis of literature sources, 
we established that until recently there was no 
mathematical relationship found between the elastic 
constants in the principal directions of anisotropy (in 
contrast with isotropic bodies). According to some 
researchers (Ye. K. Ashkenazi, Yu. S. Sobolev, and 
others), this is one of the main reasons for obtaining 
conflicting experimental and theoretical results. This 
prompted new studies on elasticity and strength in 
anisotropic materials and, in particular, composite 
materials of natural and synthetic origin.

Over the last 15–20 years, new promising data 
were obtained for anisotropic materials. In most cases, 
the insights of 50–70 years ago are still used when 
conducting research or solving practical problems.

In this paper, we present the results of our 
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theoretical studies on the anisotropy of elasticity in 
filament-wound composite materials, based on the 
well-known laws of mathematics and mechanics, 
and compare those with the results obtained much 
earlier by Ye. K. Ashkenazi, S. G. Lekhnitsky, Yu. S. 
Sobolev, and others.

Methods
The following fourth-order homogeneous partial 

differential equation in polar coordinates for an 
orthotropic body, known in the theory of elasticity of 
an anisotropic body (Ashkenazi, 1978; Lekhnitsky, 
1977) was taken as the basis for theoretical studies:

(1)

where Er, Et — the moduli of elasticity in tension 
(compression) in the principal directions;
νrt, Grt — the Poisson’s ratio and shear modulus of 
elasticity.

To solve the problem, Eq. (1) was converted into 
Cartesian coordinates, which is too cumbersome 
and, therefore, is not presented in the paper.

To solve Eq. (1) in the plane problem for a circular 
plate with cylindrical anisotropy, the stress function was 
taken as a sum of polynomials (Kurdyumov, 1946):

(2)

where f k (y) — unknown functions satisfying 
differential Eq. (1).

Results
As a result of solving Eq. (1) with the substitution 

of the corresponding derivatives of stress function (2), 
after transformations, second-order algebraic Eq. (3) 
was obtained, the roots of which are as follows:

  (3)

(4)

  (5)

where k2 = Et/Er.
One of the roots (4) can be found in the 

monograph by S. G. Lekhnitsky (1957), 
solving the bending problem in an anisotropic 
curved bar (an orthotropic bar with cylindrical 
anisotropy), where Eq. 24.7 on page 98 is written  
as follows:

(6)

By substituting the known relationships into Eq. 
(6), we obtain the same expression (4) for the first 
root, which does not contradict the relationship 
between the elastic constants, obtained by S. G. 
Lekhnitsky. However, we also obtained expression 
(5), which we could not find in any of the known 
publications. Thus, we can conveniently divide 
orthotropic anisotropic materials with cylindrical 
anisotropy into two groups. In the first group of 
materials satisfying condition (4), the modulus of 
elasticity changes from 0 to 90° (from the radial 
to the tangential direction) passing through an 
intermediate extremum point when the layers are at 
an angle of 30° to the force line.

In the second group, there is no intermediate 
extremum point and the modulus of elasticity 
changes from 0 to 90° smoothly.

This conclusion can be reached by analyzing the 
equations we obtained for the elastic constants:

  
According to our solution, the coefficient β, 

irrespective of k2= Et/Er, will be equal to 2 (as in the 
monograph by S. G. Lekhnitsky (1957)), i.e. it will 
be exactly the same as in an isotropic bar, and this 
does not contradict the conclusion drawn by S. G. 
Lekhnitsky:

Then the stresses in an orthotropic cylindrically 
anisotropic curved bar can be calculated using the 
equations in Lekhnitsky’s notations (1957):

where
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x
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(7)

During calculations for the second group of 
anisotropic materials by Eqs. (7) and (8), we 
should note that the coefficient β depends on k2, in 
contrast with the first case: this follows from Eq. 24.7 
(Lekhnitsky, 1957) and the second root of algebraic 
Eq. (3).

, i.e.
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The equations to calculate the elastic constants 
at the second root will take the following form:

The ratios of the elastic constants (conventionally 
called the elasticity parameter) depend on the 
degree of accuracy in determining each of the 
constants. The Poisson’s ratio is rather small. 
Besides, the authors of methods for its determination 
(Ye. K. Ashkenazi, A. N. Mitinsky, Yu. S. Sobolev) 
acknowledge that when the composite layers are 
at an angle of 45°, there is an inaccuracy in the 
determination.

The obtained values of the anisotropy parameters 
make it possible to eliminate this drawback and 
facilitate the solution of differential Eq. (1).

Therefore, the calculation of stresses for 
orthotropic anisotropic bodies with cylindrical 
anisotropy, performed according to Eqs. (7) and 
(8) with the use of the coefficient β = 2 in one case 

and  in the other case, depends on the 
ratio between the moduli of elasticity Et / Er = k2 for 
a particular anisotropic material.

In this case, it will be necessary to determine 
in advance which group the anisotropic material 
belongs to.

Discussion.  Ex t rema of  e last ic i t y 
characteristics

The extremum properties and the position of 
the principal anisotropy planes are of the most 
interest when studying the physical and mechanical 
properties of anisotropic materials, including 
composite materials of natural and synthetic origin.

The analytical dependence of the modulus of 
elasticity is known from the theory of elasticity:

  
(9)

 
With the introduction of the following notations:
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Ye. K. Ashkenazi obtained the following instead 
of Eq. (9):

.

This equation can be applied to any plane of 
elastic symmetry.

The equation suggested by A. N. Mitinsky (1948) 
for an orthotropic body in his notations has the 
following form:

.

This equation is similar to the equation for 
isotropic materials:

By equating the first derivative  to zero, Ye. K. 
Ashkenazi obtained the following:

.

The first two extrema can be found by equating 
the factor outside the brackets to zero. Thus, we get 
the following:

α1 = 0°; α2 = 90°.
The third extremum of the modulus of elasticity 

will be achieved at the following angle:

;

or with account for substitution 2.31 (Ashkenazi and 
Ganov, 1981):

For an equally reinforced material (at C = 1), e.g. 
plywood, α3 = 45°.

The third extremum will be achieved only subject 
to the following inequality (Ashkenazi and Ganov, 
1981):

If this condition is not met, the modulus of 
elasticity will have only two extrema, as, for instance, 
in filament-wound fiber-glass or natural wood in the 

plane of the greatest stiffness (in the direction of the 
fibers).

The modulus of elasticity Ex’ of an orthotropic 
anisotropic material in an arbitrary direction can be 
determined by expression 2.28 from the monograph 
by Ye. K. Ashkenazi (1978).

For an arbitrary direction of the X’ axis, with 
account for the known ratio between the direction 
cosines:

Ye. K. Ashkenazi obtained the values of the 
direction cosines:

1) at n1 = 0;

2) at m1 = 0;

 
3) at l1 = 0;

where  In particular cases: m1 = 

0; l1 = 0; n1 = ± 1 l1 = 0; n1 = 0; m1 = ±n1 = 0; m1 = 0; l1 
= ± 1.

Our solution (Gluhih et al., 2016) coincides with 
this one.

Conclusions
1) The found mathematical relationship between 

the elastic constants in the principal directions of 
anisotropy simplifies the solution of elastic problems 
for elastic fiber composite materials.

2) Experimental determination of elastic constants 
can be streamlined.

3) Using the suggested solution, with account 
for the tensorial nature of elasticity and strength 
characteristics, it will be possible to study the 
strength of composite materials considering the 
angle of the reinforcing fibers.
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Аннотация
В статье приведены новые материалы исследований анизотропии волокнистых материалов с цилиндрической 
анизотропией, к которым относятся армированные различными волокнами намоточные композиционные 
материалы. Методы: Автор дает математическое решение дифференциального уравнения четвёртого порядка 
в частных производных с двумя переменными для анизотропного ортотропного тела в полярных координатах. 
Для решения этого уравнения перевели в декартовы координаты и использовали функцию напряжений в виде 
суммы полиномов. Результаты и обсуждения: В итоге решения были получены два соотношения между 
постоянными упругости в главных направлениях анизотропии — так называемые параметры упругости. Одно из 
них получено впервые, а второе вытекает из решения задачи анизотропии криволинейного ортотропного тела 
С. Г. Лехницким, и полученное решение ему не противоречит. Таким образом, автор считает, что ортотропные 
материалы могут быть разделены на две группы. В одной группе, при переходе от радиального направления 
к тангенциальному, постоянные упругости принимают экстремальные значения при расположении слоёв под 
углами 0°, 60° и 90°. В другой, промежуточное экстремальное значение отсутствует, и постоянные упругости 
принимают экстремальные значения при наклоне слоёв под углами 0° и 90°. Результаты исследований 
представляют интерес при разработке новых высокопрочных композиционных материалов, при разработке 
новых технологий проектирования и изготовления строительных конструкций, высокопрочных конструкций из 
синтетических композиционных материалов.
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Aнизотропия свойств, композиционные материалы, математическая модель, цилиндрически анизотропное тело, 
модуль упругости, главные напряжения, постоянные упругости, коэффициент Пуассона, модуль сдвига.


