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Abstract

The seismic behaviour of structural systems representing Greek Orthodox churches is examined. All these
churches are made of stone masonry in various architectural forms. During the years such churches developed
damage to their stone masonry structural elements due to the amplitude of the gravitational forces acting
together with the seismic forces. In certain cases such damage was amplified due to the deformability of the
foundation. The behaviour of structural systems representing Greek Orthodox churches was simulated through
linear and non-linear numerical models. The numerical results together with assumed strength values or failure
criteria were utilized to predict the behaviour of the various masonry parts in in-plane shear and flexure as
well as out-of-plane flexure. The deformability of the foundation partly explains the appearance of structural
damage as can be seen both from observations and the numerical predictions. A limit-state methodology is
presented whereby the demands obtained from linear elastic numerical models combined with limit-state in-
plane behaviour of unreinforced stone masonry walls in shear/flexure or diagonal tension can yield reasonably
good predictions of observed behaviour. Furthermore, the possibilities offered by non-linear inelastic numerical
analyses as alternative means for examining the performance of unreinforced stone masonry walls is also
briefly presented. Towards this objective, non-linear inelastic numerical simulation results are presented that
yield reasonably good agreement with the relevant measured behaviour of stone masonry wall specimens of
prototype dimensions that were subjected to simultaneous vertical compression and horizontal cyclic seismic-
type loading in the laboratory. The obtained results from these specimens were utilized to also validate an
expert system based on this limit-state methodology. Again, the observed behaviour was predicted with
reasonable accuracy in terms of bearing capacity and mode of failure by this expert system.
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1. Introduction

Various parts of Greece have been subjected
during the years to a number of damaging
earthquakes (GEER, 2014; Papazachos et al., 2003;
Manos, 2011). One of the most demanding tasks
for counteracting the consequences of relatively
intense seismic events is the effort to ensure the
structural integrity of “old” churches that usually
sustain considerable damage. There are two distinct
structural systems that these “old” churches usually
belong to. The “Basilica” architectural form is shown
in figures 1a and 1b whereas the so called “crucifix
form with a central dome” architectural form is shown
in figures 2a and 2b.

The seismic performance of a considerable
number of such “old” Christian church structural
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systems has been studied by Manos et al. (2008,
2009, 2010(1,2), 2011, 2013(1,2), 2012, 2014,
2015(1,2,3)) utilizing a variety of numerical
simulations as presented in section 2. In some
cases, the foundation was considered to be non-
deformable; however, this is a gross approximation
as in most cases these churches are founded on
deformable soil. In some instances it is evident
that the soil-foundation deformability amplified the
structural damage (Manos et al. 2013(1), 2014,
2015(2,3)). Consequently, the numerical simulation
tries to include in a simple way the effect of the soil-
foundation deformability, as presented in section 3.
The main objective of all these numerical simulations
is to obtain realistic estimates of the demands (S,)
that a particular load combination poses on various
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a) Longitudinal East-West section, View from North

Fig. 1. The Basilica church of Achiropoiitos, Thessaloniki, Greece

b) Longitudinal East-West section, View from South

a) Pign2. The church of Holy Trinity (Agia Triada) at Vithos — Voio — Kozani — Greece

types of stone masonry elements. This is needed in
order to be able to monitor the ability of the various
stone masonry structural elements to exhibit (or
not) satisfactory performance, that is to satisfy (or
not) a limit state condition representing either an in-
plane shear / flexural mode of failure or an out-of-
plane flexural mode of failure. Towards this objective
it is necessary to obtain estimates of the relevant
in-plane shear / flexural or out-of-plane flexural
capacities (R,). This is briefly outlined in section 4.
The most vulnerable masonry parts of these “old”
churches are the masonry piers between door and
window openings of the vertical peripheral walls.
Such structural elements are presented in section 5
together with a particular experimental and numerical
study that tries to predict the non-linear behaviour of
such stone masonry piers. For this purpose, stone
masonry piers of prototype dimensions built with
prototype materials, which resemble the ones used
in “old” churches, are subjected to a combination of
vertical loads and horizontal seismic-type actions
in the laboratory. The measured behaviour is
then utilised to validate the employed numerical
simulation by comparing the predicted with the
observed behaviour.

2. Numerical simulation of the seismic
performance

2.1. Forming the numerical model: A relatively
simple way to numerically simulate the seismic
performance of structural systems representing
“old” churches is to employ shell finite elements for
the stone masonry parts; in this way both in-plane
as well as out-of-plane deformations and states
of stress develop from transferring the imposed
loads. This numerical simulation through shell finite
elements follows the mid-plane of the actual stone
masonry parts. Frame elements are also employed
to numerically simulate the wooden trusses as well
as the slender columns of the interior. In order to
realistically approximate the stiffness of the masonry
parts an appropriate value for the Young’s Modulus
is assumed, in the range of 1500MPa or less. This
is based on experimental measurements of the
deformability of such stone masonry elements when
they are subjected to a combination of vertical loads
and horizontal seismic-type actions rather than pure
axial compression tests.

2.2. Load Combinations: As already stated, the
main objective of these numerical simulations is to
obtain realistic estimates of the demands (S,) that
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a particular load combination imposes on various
stone masonry parts that form the total structural
system. In all these studies the employed load
combination is one that includes the gravitational
loads (G) together with the earthquake forces Ex
and/or Ey along the longitudinal and transverse
directions, respectively. The load combinations
0.9G+1.4Ex or 0.9G+1.4Ey can be used instead of
the load combinations GtEx+0.3Ey or G+0.3Ex+Ey,
specified by the seismic codes (Eurocode 8; Manos,
1994; Provisions of Greek Seismic Code 2000;
Provisions of Greek Seismic Code, 2003); this
is an indirect but simple way to combine the two
horizontal components of the seismic action, bearing
in mind that the stone masonry walls are checked
separately for the in-plane and out-of-plane state
of stress (Gulkan at al., 1990). Furthermore, from
extensive studies it was demonstrated that the load
combinations 0.9G+1.4Ex or 0.9G+1.4Ey lead to
more conservative (relatively larger) demands than
the load combinations GtEx+0.3Ey or G+0.3Ex+Ey.
In addition, because gravity forces usually lead to
compressive state of stress normal to the bed-joints
in critical regions of vertical stone masonry walls and
thus increase their corresponding shear strength, a
reduction of the gravity forces is introduced (0.9 G)
in order to lead to conservative (relatively smaller)
shear strength estimates.

2.3. Linear-elastic numerical analyses: The
numerical model simulating the structural system of
the “old” stone masonry churches is subjected first to
the gravitational forces and then to the earthquake
actions. The latter can be applied in various different
ways depending on the choice of method of analyses.
Initially, a linear-elastic behaviour is assumed for the
various stone masonry parts and their connections.
A direct consequence is that the results from the
earthquake actions can be super-imposed on the
results from the gravitational forces. Despite the
fact that this assumption is a simplification of the
behaviour of stone masonry structures under seismic
loading, it has the great advantage of simplicity that
leads to numerical solutions for seismic type loads
within realistic limits of computer memory and time.
Moreover, it also has the advantage of producing
various deformation patterns and corresponding
state-of-stress for all structural elements that can
be easily understood when linked with the expected
transfer of loads even if they are a product of this
basic simplification of linear-elastic behaviour. One
popular method of analysis for earthquake actions is
the dynamic spectral method whereby the amplitude
of the seismic forces is based on accepted design
or site-defined spectral curves. Afirst check of the
numerical analyses results involves a thorough
study of the resulting dynamic eigen-modes of
vibration with their corresponding eigen-frequencies
and participation mass-ratios (Manos et al., 2008,
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2009, 2010(1,2), 2011, 2013(1,2), 2012, 2014,
2015(1,2,3)). Through a screening process of
these dynamic characteristics one has the ability
to exercise his structural engineering experience
by removing eigen-modes that are the product
of this linear-elastic behaviour combined with the
rigid connections of the various stone masonry
elements assumption, thus not including in the
dynamic analysis modes of dynamic response
that are obviously unrealistic for stone-masonry
structures but still retaining the significance of the
translational modes for the structure as a whole or
the fundamental in-plane and out-of-plane modes
of vibration of the main stone masonry parts.
Should the remaining eigen-modes not mobilize
a significant part of the total structural mass (e.g.
larger than 90%) an appropriate amplification factor
is introduced to compensate for this. In defining the
earthquake actions through a spectral curve for the
longitudinal Ex and the transverse Ey directions it is
necessary to also define a value for the behaviour
factor (g, (Eurocode 8)) the value for the importance
factor (y, (Eurocode 8)) and the soil conditions for
the structure at hand. For unreinforced masonry
a value in the range of 1.5 to 2.0 is commonly
employed for the behaviour factor (q, (Eurocode 8;
Provisions of Greek Seismic Code 2000; Provisions
of Greek Seismic Code, 2003)). The value for
importance factor can be derived from the fact that
for common occupancy contemporary residential
buildings the value of this factor is 1.0, based on
10% probability of exceeding the design ground
acceleration in a period of 50 years (Eurocode 8;
Manos et al., 1994; Provisions of Greek Seismic
Code 2000; Provisions of Greek Seismic Code,
2003). Prototype earthquake acceleration ground
motions and their corresponding response spectral
curves can be employed alternatively, provided that
this choice is based on sufficient justification for a
particular “old” stone masonry church. In this case,
a constant ductility response spectral curve can also
be employed with a ductility value in the range of
the values mentioned before for the behaviour factor
(g (Eurocode 8; Manos et al., 1994; Provisions of
Greek Seismic Code 2000; Provisions of Greek
Seismic Code, 2003)).

The dynamic spectral method of analysis has the
advantage of producing results that are based on the
dynamic nature of the earthquake actions. However,
because these results are produced from a statistical
combination of the contributions of the eigen-modes,
the deformation patterns and the maximum values
of the stresses in the critical locations cannot be
easily selected and studied. An alternative method
of analysis is an “equivalent linear pushover” method
whereby all the structural masses are subjected to
a constant value of horizontal acceleration. The
amplitude of this acceleration is defined so that the
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resulting base shear value in either the longitudinal
Ex or the transverse Ey direction is equal to the
corresponding base shear value that resulted
from the spectral dynamic analysis. Finally, the
earthquake actions can be alternatively applied
through a dynamic time history analysis. In this case,
a horizontal ground acceleration time history can be
introduced in either the longitudinal Ex or/and in the
transverse Ey direction. Moreover, this can be done
employing the recordings of a prototype earthquake
event provided that this choice is based on sufficient
justification for a particular “old” stone masonry
church. The results that are obtained through such
an analysis are usually of a very large volume
that need particular experience and efficient post-
analysis tools in order to extract the most significant
information. The previously described linear-elastic
methods of analyses in order to determine the
demands (S,) at various stone masonry structural
elements can be combined next with the definition of
the corresponding capacities keeping in mind certain
realistic limit-state scenarios, as will be detailed in
section 4.

2.4. Non-linear numerical analyses: The same
finite element representation that was used for the
linear elastic analyses of the stone-masonry churches
can also be employed for the non-linear numerical
analyses. However, this depends upon the non-
linear analyses options that are incorporated in the
software to be utilized (Ramalho et al., 2008). Thus,
Manos et al. (2008) employed shell finite elements
as described in 2.1. Then the LUSAS software
package was used to perform non-linear analyses
of the church of Agia Triada for seismic type loading,
employing three alternative modified Von-Misses
failure envelopes in a non-linear, step-by-step
incremental analysis (see also section 5). Betti and
Vignoli (Betti & Vignoli, 2008) employed brick-type
finite elements together with the software package
ANSYS to investigate the seismic performance of the
Farneta Abbey, a Basilica-type structure, employing
a Drucker—Prager perfectly plastic criterion. The most
important step in this type of non-linear analyses is to
select a non-linear material model that can simulate
in a realistic manner the non-linear behaviour of the
stone-masonry structural elements under combined
gravitational and seismic type loading. Due to the
large computational requirements these non-linear
analyses are of a static “push-over” nature whereby
the structure is subjected initially to the gravitational
forces and then to a realistic predetermined form
of deformation pattern that gradually increases in a
step-wise manner (Manos, 2008). This type of non-
linear analyses can be further refined by assuming
a number of pre-determined failure modes and then
selecting as most probable failure mode the one that
requires the lowest level of force for its development.

3. Soil-Foundation Deformability

The foundation of “old” masonry churches is
considered to be formed by a peripheral masonry
strip that is an extension of the masonry walls in
the sub-soil at a certain depth. In order to study
numerically the soil-foundation deformability the
following process is utilized (Manos et al., 2013(1),
2014, 2015(2,3)). First, a numerical model of the
structure and the masonry foundation strip is
formed, modelled with shell elements whereas the
soil volume underneath is modelled with solid “brick”
finite elements with linear elastic properties thus
representing the volume of soil under the church
extending to a certain depth below the foundation —
soil interface. When reliable geotechnical data are
not readily available the investigation of the soil-
foundation deformability is attempted in a parametric
way. Initially, a shear wave velocity value equal to
420m/sec is assumed for example and that value
together with a soil density equal to 20KN/m3 leads
to a shear modulus equal to 354MPa and a Young'’s
modulus value for the soil equal to 1000MPa, which
represents a rather hard soil. Alternatively, a shear
wave velocity value equal to 200m/sec leads to a
Young’s modulus value for the soil equal to 230MPa,
which represents a medium stiffness soil (Manos,
2015(2)). A numerical simulation that includes the
superstructure, the foundation masonry strip and the
soil layers, as shown in figure 3a, is then subjected
to the dead weight (G). The resulting vertical
deformation patterns for the 1st (Vs=419m/sec)
and 2nd (Vs=200m/sec) case of soil deformability,
are obtained all along the foundation-soil interface
(figures 3b and 3c).

Next, in order to simplify the final numerical model
of the examined “old” stone masonry churches
including the soil-foundation deformability, a simple
alternative numerical model of the foundation
masonry strip — soil interface is formed. This model
retains all the aspects of the superstructure and
the foundation masonry strip. However, this time
the effect of the deformability of the soil layers is
represented by two-node 3-D link elements with
such an axial stiffness that when the same dead
weight is applied as was done before, the resulting
vertical deformation pattern at the bottom surface
of the foundation — soil interface is as close as
possible to the values obtained before with the full
presence of the soil layers (figure 3a, b, ¢). The
following summarise the most significant effects
of soil-foundation deformability on their seismic
behaviour:

- A lengthening of the eigen-period values and
a mobilization of larger modal mass ratios when the
deformability of the soil-foundation is included than
when the soil is presumed non-deformable. This in
turn usually leads to an increase in the values of the
demands (S,).
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Vs=419m/sec

1# case Vs=419m/sec

a) b) Vertical deflections the soil-foundation interface

Vs=200m/sec

c) Vertical deflections the soil-foundation interface

Fig. 3. 3-D model of the superstructure, the soil-foundation interface and the soil layers

- This increase in the demands (S,) becomes
more pronounced when the structural system is non-
symmetric or the deformability of the foundation is
non-uniform in plan. This in turn result in significant
stress concentration for the structural elements,
even only for the gravitational forces, that can lead
to spectacular structural failure, as was the case of
the church of “The Assumption of the Virgin Mary” at
Dilofo-Kozani-Greece (figure 4, (Manos et al., 2014,
2015(1,3)).

4. Expected seismic performance on the basis
of the linear analyses demands

The demands (S,) for the various stone masonry
structural elements, as obtained from the linear-
elastic numerical models are utilized in the following
two ways: First, the results can be studied in terms of
normal and shear stresses 0., 0,, T,,. These results
are usually presented in terms of coloured diagrams;
by studying them, areas of stress concentration can
be identified that can be compared with damaged
areas as a first qualitative check, as seen in figures
4 and 5.

Next, certain commonly used masonry failure
criteria can be adopted for either in-plane tension/
compression or shear/compression or out-of-plane
tension. All the masonry parts are examined in terms
of the obtained in-plane and out-of-plane stress
demands (S,) against the corresponding normal
and shear stress capacities (R,). In defining these

Damage to the South-East corner

capacities, use can be made of existing guidelines
for the design of contemporary masonry structures
(e.g. Eurocode 6) or experimental data which can
be substantiated as bearing some resemblance
to the stone masonry structural elements at hand
(Eurocode 6). Table 1 lists the assumed mechanical
characteristics for the stone masonry of the church of
Holy Trinity (Agia Triada) at Vithos — Voio — Kozani —
Greece (Manos et al., 2014, 2015 (1,3)). Moreover,
a Mohr-Coulomb failure envelope was adopted for
the in-plane shear limit state of the stone masonry,
when a o, normal stress is acting simultaneously
with a shear stress demand. This is defined through
the equation 1 (Eurocode 6).
f,=f,.,t040, (Eq. 1)

where: f, is the shear strength of the stone masonry
when the normal stress o is zero; f,  was assumed
to be equal to 0.19 N/mma2.

By comparing the capacities (R,) with the
demands (S,) the following performance criterion is
checked:

Ratio=R=R,/S, >1 (Eq. 2)

a satisfactory performance is signified. The opposite
is true when Ratio = R =R, / §, <1 whereby a
non-satisfactory performance is signified. In order
to further detail the use of the above performance
criterion the following capacity over demand ratios
are defined: R_is the ratio of the in-plane tensile

Damage to the North longitudinal wall

Fig. 4. The stone masonry church of “The Assumption of the Virgin Mary” at Dilofo-Kozani-Greece
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Fig. 5. Load Combination 0.9G+1.4(+Ex). The stone masonry church of “The Assumption of the Virgin Mary” at Dilofo-Kozani-Greece

strength value (f, or f ) over the corresponding
normal tensile stress demands o,,0r o, respectively.
R is the ratio of the in-plane shear strength value
(f, equation 1) over the corresponding shear stress
demand T,,. Finally, R, is the ratio of the out-of-
plane tensile strength value (f,, or f ) over the
corresponding tensile stress demand o,, or o,
respectively. As already stated, ratio values smaller
thanone (R, R, R, <1) predict that the corresponding
limit state condition was exceeded thus signifying
prediction of structural damage. It was shown by
numerous studies that the methodology described
here correlates quite well with observed damage or
with predictions of structural damage through the
non-linear approach (section 5).

Taking this rationale one step further the following
can also be stated as being valid. By obtaining
in the same location of a structure (a section of a
structural element) ratio values R, R R, with all or
some of them being smaller than 1 (R, R Ry <1) the
damage scenario that can be predicted as prevailing
is the one that corresponds to the limit-state with
the smallest ratio value. Figures 6a and 6b depict
the R ratio values of the in-plane shear strength /
shear demand for the load combination 0.9G+1.4Ey
for the internal transverse wall, which separates the
main church from the women’s quarters situated at
the west portion of the church of Holy Trinity (Agia
Triada) at Vithos — Voio — Kozani — Greece (Manos et
al. 2014, 2015(1,3)). Shear damage is predicted by
these numerical analysis results as can be seen from
the R, ratio values that are well below one (R < 1)

in many locations. Moreover, when comparing the
ratio values between figures 6a and 6b for the same
locations it can be seen that the deformability of the
foundation leads this ratio to obtain even smaller
values than for the case of the non-deformable
foundation. This demonstrates the detrimental effect
of the flexibility of the foundation for this church,
as described in section 2. The structural element
capacities can be found either directly from the
strength values, when one performs an evaluation
of the performance of a damaged structure or with
the introduction of the appropriate safety factors for
stone masonry (y) when one performs an evaluation
of the performance of a structure for design
purposes (Eurocode 6). Initially, the R, R Ry ratio
values are found for the maximum values of stress
demands which are obtained through the numerical
simulations. However, finding ratio values (R R R,
smaller than 1 locally, through such maximum stress
demand values, does not imply that the limit-state
capacity of a structural element is exceeded. An
alternative approach has been proposed by Manos
et al (2015(1)) that is based on making this capacity-
over-demand checks in the level of a horizontal
cross-section for vertical stone masonry structural
elements. This can be extended for cross-sections
of different orientations and for stone masonry
structural elements other than vertical. However,
as the most significant structural elements for the
safe earthquake performance of stone masonry
Greek Orthodox churches are the vertical stone
masonry walls and piers this approach is further

Table 1
Assumed Mechanical Characteristics of the Stone Masonry
Young's Poisson’s | Compressive Strength Tensile Strength Shear strength
Modulus Ratio (N/mm?) normal /parallel £ (N/mm?)
(N/mm?) bed-joint (N/mm?) vko
Limit values 1500 0.2 3.8 0.250/0.800 0.19
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Ratio R, values of in-plane shear strength / shear demand.

The church of Holy Trinity (Agia Triada) at Vithos — Voio — Kozani — Greece

Fig. 6a. Non-Deformable Foundation
Internal Transverse Wall, 0.9G+1.4Ey

detailed here for the in-plane limit-state behaviour of
vertical masonry walls and piers. For this purpose,
the results of the linear-elastic numerical analysis,
in terms of stress resultants (N, M, H, figure 7), are
then utilized.

4.1. In-plane bearing capacity against sliding
together with the flexural capacity

For this purpose use could be made of the
provisions of Eurocode 6. For the masonry pier which
is studied here the shear strength of the masonry
() is the minimum value of the following:

f,=f, +040 (Eq.1 stated before)

vk vk0
where o is the value of the average normal stress,
f,, the shear strength of the masonry for zero
normal stress that is specified by the provisions of

Eurocode 6.
f, <0.065f, (Eq. 3)

where f,is the compressive strength of the masonry
unit.

ka < kalim (Eq 4)
where f, . is the upper shear strength of the

masonry, as specified by the national appendix of
each member state.

The distribution of axial stress (o,) normal to a
bed joint with thickness equal to the pier thickness
that develops at this horizontal section is assumed
to be one of the four simple cases depicted in figures
8a to 8d, which are incorporated in many design
provisions. In order to obtain the shear capacity
against sliding one should properly choose which
of these four cases of normal stress distribution
develops based on the geometry, the stress
resultants (N y, Q ¥ My) and the masonry compressive
and tensile strength values, f, , and f , , | respectively.
These strength values as well as the checks being
performed are based on the provisions of Euro-
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Fig. 6b. Deformable Foundation
Internal Transverse Wall, 0.9G+1.4Ey

code 6; however, provisions from other codes can be
easily incorporated. Together with the normal stress
distribution, the length of the compressive zone (/)
is also calculated as well as the value of the average
normal stress (o), which is assumed to act in this
compressive zone as depicted in figures 8a to 8d.
Use is made of both the compressive zone length
and the average normal stress value for calculating
next the masonry shear capacity against sliding (see
equations 1, 3 and 4).

4.2. In-plane bearing capacity of a masonry
pier against diagonal tension

This is done based on the following formula
(Eq. 5) given by Bernardini et al (1980) by Turnsek
and Cacovic (1971) and by Tomazevic (2009). It is
assumed that the tensile strength of the masonry
o, = f,, depends on the maximum average shear
stress of a horizontal section of the masonry pier
and on the average compressive stress g, = N/ A
that develops at the same location where A is the

area of this section and N the compressive load.

6, = fur =\(0, 12 +(b1p0)* ~0, /2 (EQ. 5)
Where b represents the shear stress distribution
factor, which is related to the stress distribution on
the section and the slenderness ratio of the wall. It
can be assumed that b= h /I, where h is the height
and [ is the length of the pier. In this case b = 1.5
is the upper limit value and b = 1 is the lower limit
value. From the above relationship the value of can
be obtained based on the values of 0,=f ,, and o

=P8 ro, (Ea.6)

The formulas and procedures described in 4.1.
and 4.2 are incorporated in an expert system that can
predict the bearing capacity of a given pier and the
expected mode of failure of a given stone masonry
pier (Manos et al., 2015(1)). The validity of this expert
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N (Positive compression)

M (Positi ) ) Based on these values, limit-state patterns of axial stress

N (Positive anticlockwise] (0,), normal to a bed joint for a given horizontal cross-

Xé/ \ . H section are found, as depicted in figures 8a to 8d, which

T w are realistic for stone masonry elements. The objective
z here is to predict whether the transfer of these stress

y resultants can be done successfully or not, depending on

the shear and flexural capacity of this structural element,
as defined at a cross section located at a distance equal
to y from the upper boundary N, Q, M, . This is briefly
outlined in 4.1 and 4.2. for the in-plane behaviour.

¥ /2 . /2 ¥
Fig. 7. Single stone-masonry pier being stressed at its upper boundary
Ny . . . . . .
\A\M a. Case 1: Axial stress distribution is compressive along all the length of the
4 examined mortar bed joint of the pier:
a e g, 20and 0,20

o, < than the masonry compressive strength f, |

¥ % : % %

b. Case 2: o, <than the tensile limit stress f,, ; consequently, the tensile
zone is assumed to be active:

0,> 0; 0,< 0; |01|S kaw

and o, <f,,

c. Case 3: There is tension at the right fiber of the cross section, larger than
\K\My the tensile limit stress f,,, ; consequently, the tensile zone is assumed to be
inactive:

0,>0;0,<0; |o,|>T,

[0} [ k1d
(npresion N
" 12-10/3 and o, <f,
Ic/3 2/31c
| 112 112
R
14 d. Case 4 : The tensile zone remains inactive but the compressive zone
v | \M becomes narrower than before.
a 0,> 0; 0,< 0; |02| > ka1d
N, M
7 ande=—2=2>0,45
f—lc/2—f—Ic/2—} N yl

b—2-ic/2—
1 le 7

} 1/2 } 1/2 {
(Towards flexural failure):

Fig. 8. Normal to the bed-joint axial stress distribution patterns
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system was confirmed by comparing its predictions
with the observed laboratory performance, in terms
of capacity and mode of failure, of a considerable
number of masonry piers. A new series of such
comparisons are currently under way, as briefly
described in section 5.

5. Expected seismic performance on the basis
of non-linear numerical simulations

As already mentioned, non-linear inelastic
“push-over” types of numerical analyses were also
performed whereby stone masonry structures and
specimens are subjected first to the permanent
vertical loads and then the seismic horizontal forces
(Manos et al., 2008, 2015(1,2)), Vintzileou, 2008). In
what follows, the numerical non-linear step-by-step
approach will be applied to simple stone masonry
specimens that have been subjected in the laboratory
to certain load combinations that resulted in a state
of in-plane stress distribution resembling the state
of stress of vertical stone masonry piers subjected
to stress resultants from the combined gravitational
and seismic forces.

5.1. Numerical simulation of the behaviour of
a “short” pier stone masonry specimen

A number of “short” stone masonry specimens
with dimensions 500mm by 500mm in plan and 300m
in height, were built at the laboratory of Strength
of Materials and Structures of Aristotle University
using lime mortar and natural stones (Manos et al.,
2015(2,3)). The lime mortar had such a composition
as to be representative of old relatively weak mortars
commonly used in the past. A series of such samples
were tested accompanied by constant vertical
compression with variable horizontal shear load
at the top having fixed the base of each specimen
against sliding, as shown in figure 9. This set-up
was designed in an effort to obtain an estimate of
the shear strength at a limit state which represents
the failure of the mortar bed-joint as depicted in
figure 10.

Based on these experimental results, the Mohr-
Coulomb limit state criterion (equation 1) can be
approximately quantified. The numerical model of
this tested specimen is depicted in figure 11, being
supported and loaded in the same way as the
“short” pier specimen during testing. The non-linear
behavior was simulated utilizing the capabilities of the
commercial software ABAQUS (Hibbit et al., 2010).

The obtained numerical against the measured
behaviour of this specimen, in terms of shear stress
(1) versus shear strain (y), is plotted in figure 12. As
can be seen, the agreement between the non-linear
numerical predictions and the observed behaviour,
in terms of r-y plots, is reasonably good (Manos
et al., 2015(1)). The numerical predictions of the
distribution of the plastic strains as well as the tensile
principal stresses are plotted in figures 13a and
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13b, respectively. When comparing the distribution
patterns depicted in figures 13a and 13b with the
observed failure mode during testing, depicted in
figure 10, reasonably good agreement can again be
seen.

5.2. Numerical simulation of a “square” stone
masonry pier specimen with simultaneous com.
pression and horizontal load

A stone masonry almost “square” pier is
examined next having a length equal to I=1500 mm,
a height equal to h=1400 mm and a thickness equal
to &= 500 mm, thus a length over height ratio (I/h)
equal t0.1.071 (quite close to 1.0). This square pier
specimen was built at the laboratory of Strength
of Materials and Structures of Aristotle University
with the same stones and mortar that were used to
construct the short pier specimen presented before.
A number of square and short pier specimens
using mortars of different compositions were also
constructed and tested; however, space limitations
prohibit the presentation of their performance. The
square pier specimens were subjected to a uniform
compression equal to approximately 0.12Mpa at
their upper boundary. The horizontal load, as shown
in figures 14a and 14b, results from the imposed
horizontal displacement at the upper boundary which
reaches a value equal to 10mm at the final stages.

Figure 14a depicts the experimental set up
showing the resulting horizontal load at the top of
the stone masonry pier whereas figure 14b is the
corresponding numerical simulation. The vertical
load is also shown as applied at two locations at the
top of a steel beam resting on top of the specimen.
This steel beam is capable of sliding horizontally
through a sliding interface between this steel beam
and the stone masonry specimen. The sliding
surfaces have a coefficient of friction less than 2%,
thus providing very little horizontal resistance during
the application of the horizontal load to the specimen.
Moreover, a system of load cells and low-stiffness
springs is provided at each location of vertical load
application. Using these low-stiffness springs the
variation of the vertical load that results from the
vertical deformations of the specimen during the
combined horizontal and vertical load sequence
is minimized. In any case, the amplitude of the
vertical load and its variation in each one of these
two locations is recorded continuously by the two
load cells. The locations where these vertical loads
are applied together with the locations of the sliders
(whereby these vertical loads are transferred to the
specimen) are chosen in such a way as to have an
almost uniform distribution of axial stresses normal
to the bed-joints of the stone masonry specimen.
The vertical loads, which were applied at this stone
masonry pier at the initiation of testing, were equal
to 49KN at each vertical loading location. The
special gravity of the masonry is considered equal
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Fig. 9. Compression and shear loading applied at the short stone masonry piers utilizing

hydraulic actuators

Fig. 11. Numerical simulation of the short pier tested specimen

to 22.0 KN/m3. This “square” pier is assumed to be
constructed by relatively weak masonry; therefore,
the Young’s modulus for the horizontal load is
presumed to be equal to 200 MPa. Both the average
normal and shear stress at a horizontal cross-section
of the specimen, corresponding to an ideal bed-joint
was obtained by dividing the measured applied total
horizontal and vertical load by the net cross-section
(approximately 75% of the gross cross-section due
to the building detail). Figures 15a and 15b depict
the variation of the shear stress versus the shear
strain (blue line). The horizontal load was applied in
a cyclic low-frequency seismic-type manner.

PE, Max. In-Plane Principal

SNEG, (fraction = -1.0)

{Avg: 75%0)
+3.810e-02
+3.494e-02
+3.177e-02
+2.861le-02
+2.544e-02
+2.228e-02
+1.911e-02
+1.595e-02
+1.279e-02
+9.620e-03
+6.455e-03
+3.291e-03
+1.258e-04

Fig. 13a. Distribution of predicted plastic strains for the short pier

Fig. 10. Observed damage patterns of
the short pier

Shear cyclic response (1-y) for stone masonry short
pier. Limre\ Tortar M1. Test 2
U.Z

Normal stress —0-15—

on=0.16Mpa O.BO.; / % ‘ }
A "/
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obr 2 s odds e o
/2N =

——— Test results
Numerical Simulation 1
= = ' Numerical Simulation 2

Shear stress 1
, (Mpa)
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Fig. 12. Short pier observed and numerically predicted shear
stress versus shear strain

In figures 15a and 15b the variation of the
compressive axial stress normal to the bed-joint is
also plotted (pink line using the far right axis with
the negative values). As can be seen in figure 15a,
the maximum shear stress was equal to 0.09MPa
for Test 6. For this test the corresponding average
axial stress value was equal to -0.16MPa exhibiting
a relatively small variation around this value during
cyclic loading. On the contrary, the variation of the
axial stress during cyclic test 7 reached a value
equal to -0.26MPa that corresponded to a shear
stress value equal to 0.15MPa. At the reverse cycle,
the axial stress value was equal to -0.12MPa when

S, Max. Principal

SNEG, (fraction = -1.0)

{Avg: 75%)
+5.781e-02
+5.209e-02
+4.817e-02
+4.335e-02
+3.854e-02
+3.372e-02
+2.890e-02
+2.409e-02
+1.927e-02
+1.445e-02
+9.634e-03
+4.817e-03
+0.000e+00

Fig. 13b. Distribution of predicted tensile principal stresses for
the short pier.
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the corresponding shear stress value was equal to
0.09MPa, as was the case for test 6.

The measured variation of horizontal load (H)
versus horizontal displacement () at the top of the
specimen for tests 6 and 7 is depicted in figure 16.
In the same figure the numerical predictions are also
plotted as resulting from the non-linear numerical
simulation. As can be seen, the comparison between
predicted and observed H-& response is reasonably
good for Test 6. For test 7 there is a distinct difference
between observed and predicted response when
the horizontal load attains negative values. This is
attributed to the variation of the vertical load at this
stage of the experiment that reached much higher
absolute values, as already mentioned before on the
basis of figure 15b. This was not accounted for up to
now in the numerical simulation that kept constant
throughout the vertical load, as already described
and equal to 49KN at each location. Additional
numerical simulations are required to account for

v o lemlo-

B - -/ —H.—:—.Q-"

Fig. 14a. Stone masonry wall specimen S1M1. Loading
arrangement being utilized

Stone masonry wall S1M1

Vertical preloading 49KN + 49KN Test 6
012 -0.13

17 -0.15

7 0.17

-0.19

.0p16
- -0.21

shear stress 1
axial stress o
(MPa)

- -0.23

=U. T4 '025
shear strain

Fig. 15a. Variation of the measured shear / axial stress versus
the shear strain. Test 6
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the observed vertical load variation. The numerically
predicted horizontal deformation pattern resulting
from the non-linear simulation is depicted in figure
17; this deformation pattern is for the maximum
horizontal load equal to 57.71KN, which was
reached for horizontal displacement at the top of the
pier equal to 6=1.85mm.

Figure 18 depicts the damage patterns in the
form of wide diagonal cracks that were formed
in this stone masonry wall specimen (S1M1) and
were photographed after the end of Test 7. Figure
19 depicts the distribution of the plastic strains that
developed in the non-linear numerical simulation
when the horizontal load dropped for the first time
from its maximum value to 49.96KN and horizontal
displacement at the top of the pier reached a value
equal to =2.4mm. As can be seen, the formation
of the observed diagonal crack pattern is to a
certain extend predicted by the non-linear numerical
simulation. Next, the expert system, which was briefly

Fig. 14b. Numerical simulation of the loading arrangement
for wall specimen S1M1

Stone masonry wall STM1
Vertical preloading 49KN + 49KN Test 7
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Fig. 15a. Variation of the measured shear / axial stress versus
the shear strain. Test 7
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Stone masonry wall STM1
Vertical preloading £\9KN + 49KN
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Fig. 16. Variation of the horizontal load versus the horizontal
displacement at the top. Tests 6, 7 together with numerical
predictions

Fig. 18. Diagonal cracks that developed in the stone masonry
specimen S1M1

described in section 4.2, was employed for this tested
stone masonry specimen (S1M1) with the following
particular geometric and mechanical characteristics
that are relevant to this specimen: Length=1.5m,
Height=1.2m, Thickness=0.4m (to account for 25%
reduction), Compressive strength f, =4.35MPa, Initial
shear strength f ,_=0.06MPa, Tensile strength normal
to the bed-joint f =0.05MPa, Initial compressive
force N=98KN, Initial bending moment M=0. The
subsequent performance check was for a cross-
section at a distance of y=0.7m from the top (see
section 4 and figures 7, 8) the maximum horizontal
load capacity, predicted by this expert system, is
H= 64.45KN and the predicted mode of failure is
diagonal tension (section 4.2). Both predictions by
the expert system agree reasonably well with the
observed performance (figures 16 and 18).

6. Conclusions

1. The seismic behaviour of stone masonry
Greek Orthodox churches is examined in this paper.
This study was based on long term observations of
the seismic performance of this type of structures
that developed structural damage when subjected
to actual moderate to strong earthquake ground
motions during the last 50 years.

Fig. 17. Numerically predicted horizontal deformations for the
stone masonry specimen. Maximum value at top 1.85mm

| W
I O O |
CeEH HHHH
1 I ) B = 8 i 7 A

Fig. 19. Distribution of numerically predicted plastic strains for
H =43,41 KNt Ux =6,58 mm

2. A methodology is first described that was
based on a linear numerical simulation and a dynamic
spectral method of analysis to obtain the demands.
The corresponding capacities were next obtained
by considering in-plane and out-of-plane limit-
states that are well established from experimental
investigations and are included in current design
procedures for contemporary masonry structures.
The difficulty here was to reach with a good degree
of approximation the relevant mechanical old stone-
masonry strength values that are required in order
to calculate these capacities. In-situ and laboratory
tests can be mobilised for this purpose. Moreover,
the significance of the soil-foundation deformability
was discussed.

3. Good agreement was achieved when
comparing the predicted with the observed
performance by applying this linear limit-state
methodology in a number of stone masonry Greek
Orthodox churches whose seismic behaviour has
been well documented in the past.

4. An expert system was developed that
can be used to facilitate the results of the above
methodology for vertical stone masonry structural
elements. The basis of this expert system for
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calculating the capacities for in-plane demands was
briefly described.

5. Next, certain type of non-linear numerical
simulation was examined towards reaching realistic
predictions of the observed performance of stone
masonry structural elements. For this purpose
use was made of experimental set-ups employing
relatively simple stone masonry specimens of
prototype dimensions which were constructed with
materials resembling old stone masonry. These
specimens were subjected to in-plane combined
compression, shear and flexure in such a way as to
develop stress fields that are similar to the state of
stress prototype stone masonry structural elements
develop during combined gravitational forces and
seismic actions. The obtained measured behaviour
from these tests was then utilized to validate the
employed non-linear numerical simulations. As was
demonstrated from these comparisons a realistic
estimate was obtained of the observed seismic
type behaviour by these non-linear numerical

simulations. Following further validation these non-
linear simulations will next be employed in more
complex structural components.

6. The obtained results from these specimens
were utilized to also validate the expert system
based on this limit-state methodology. Again, the
observed behaviour was predicted with reasonable
accuracy in terms of bearing capacity and mode of
failure by this expert system.
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