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Introduction
Evolution of living systems and vegetable origin systems 

is accompanied by optimization of their "engineering" 
components with the following improvement of resistance 
to external impacts. An ordered structure (17) forms under 
the influence of the environment.

The strongest reinforcing fibers formed in mechanical 
tissues during evolutionary optimization of bearing 
structures. The direction of such fibers coincides with 
maximum tensile and compressive stresses. 

Micro- and macro-structure orientation providing high 
resistance of mechanical tissues to external impacts 
represents a result of evolutionary optimization of support 
systems in nature, including bone tissues of animals 
and humans, plant and tree stems. In recent decades, 

such ordered structure of mechanical tissues in the 
plant, animal and human world has become an object of 
increasing attention with the purpose of borrowing when 
developing new high-strength composites for engineering 
and construction — materials with pre-defined properties. 

In a relatively short period of time, composites have 
evolved from materials designed exclusively for strategic 
and military use to wide application materials used in 
various industries and national economy sectors.

Due to the increasing demand of population in many 
countries for the wide range of residential buildings, 
special attention is given to application of new advanced 
high-performance composites with high aesthetic, as 
well as special characteristics, intended to be used in 
construction. 
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For more than one decade, composites with a structure 
reminding the tree stem have been made by winding (with 
the use of reinforcement made of fiber metal and non-
metal materials in the form of fibers or strips (16)).

In many cases, filament-wound composites can be 
referred to cylindrically anisotropic materials. The full set 
of characteristics of their elastic stress-strain behavior 
includes nine independent elastic constants (Ashkenazi, 
1978; Lekhnitsky, 1977).

Knowing values of elastic constants in principal 
anisotropy directions, we can determine the value of any 
elastic constant in the required direction, which is often 
necessary when determining deformations in directions 
not coinciding with principal ones (Ashkenazi, 1978; 
Ashkenazi et al., 1981; Lekhnitsky, 1957).

To determine values of elastic constants in any 
directions, we can use equations suggested by S.G. 
Lekhnitsky (1957), Ye.K. Ashkenazi (1978, 1981), A.N. 
Mitinsky (1948, 1949) and other scientists. Those 
equations include experimentally found elastic constants 
in principal anisotropy directions. The authors also paid 
special attention to the inclusion of the shear and elastic 
moduli, as well as the Poisson's ratio in directions at the 
angle of 45° in relation to reinforcing fibers, the method 
of determination of which is imperfect, according to 
the authors. This is due to the lack of mathematical 
relations between elastic constants in principal anisotropy 
directions like in isotropic materials. This paper suggests 
a way to improve the method for determination of elastic 
constants in filament-wound composites by establishment 
of mathematical relations between their elastic constants 
in principal anisotropy directions.

Research method
As a basis of the theoretical research, a fourth-order 

differential equation in partial derivatives (known in the 
theory of elasticity of an anisotropic body) for a cylindrically 
anisotropic orthotropic body, in polar coordinates, which the 
stress function satisfies, was taken. Without consideration 
of body forces, this equation in polar coordinates is written 
as follows (Ashkenazi, 1978; Lekhnitsky, 1957, 1977):
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It is convenient to use the obtained equation for circular 
plates. To solve tasks related to design of rectangular 

elements, it is more convenient to use the last equation in 
Cartesian coordinates.

After differentiation and substitution of the 
corresponding derivatives in equation (1), the following 
fourth-order differential equation in partial derivatives 
in Cartesian coordinates is obtained for a cylindrically 
anisotropic orthotropic body: 
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If the load on edges and ends of a rectangular 

anisotropic plate is set in the form of an entire algebraic 
function, then the corresponding stress function can be 
taken in the form of an entire polynomial. The task is 
solved using the stress function in the form of a sum of 
polynomials (Kurdyumov, 1946; Glukhikh, 2001, 1997, 
2007, 2008, 2009):
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where fk(y) — a function unknown at the initial solution 

stage, that shall satisfy differential equation (Ashkenazi, 
Ganov, 1981) and conditions on the plate contour. 

The stress function is taken in the form of the following 
sum of polynomials (Kurdyumov, 1946; Glukhikh, 2001):
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The corresponding derivatives of the stress function 
F(x, у) are substituted in differential equation (2). 

If we equate factors multiplying the corresponding x 
degrees to zero, we will obtain differential equations that 
the selected stress function shall satisfy. The first group 
of equations will include functions fk(y) with even numbers 
only, including f0(y). The second group of equations will 
include functions fk(y) with odd numbers.

The first group of equations is as follows:
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When using stress function components (f10(y), f12(y), 
…), equations following equation (8) form in the group, 
including f10(y), f12(y), etc., respectively.

It should be noted that all functions newly appearing in 
equations (7), (8), etc. will be related to f0(y), f2(y), f4(y) as 
per equation (6).

The second group of equations is as follows:
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Here the same pattern as in the previous case 
manifests itself. When using additional functions f11(y), 
f13(y), etc., differential equations following equation (11) 
form, including f11(y), f13(y), etc., respectively.

All functions f7(y), f9(y), etc. are dependent on functions 
f1(y), f3(y) and f5(y) as per (9).

Thus, a task with any number of functions fk(y) can be 
solved in the following way: at the first stage, functions 
f0(y), f1(y), …, f5(y) are determined based on equations (6) 
and (9), and then the remaining functions are determined.

Considering the order of derivatives ( ) ( )n
kf y  and 

degree of variable у, the solution of homogeneous 
differential equations (6)–(11) with variable coefficients 
can be represented in the form of algebraic functions:
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where С — integration constants.
Using the stress function F (x, у) in the form of a 

sum of polynomials for solution of differential equations 
(6)–(11), we can assume a relation between integration 
constants. This inevitably derives from the requirement 
for satisfaction of those differential equations with the 
selected function F (x, у).

Let us use, for example, the following stress function 
at the first stage:
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and differential equation (8); in order for F (x, у) to 
satisfy differential equation (8), it is required to accept the 
following:
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Substituting these functions and their corresponding 
derivatives in differential equation (6), and equating 
factors multiplying the corresponding y degrees to zero, 
the following correlations between integration constants 
can be obtained:
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Performing similar rearrangements with the use of 

functions (14)–(18) and differential equation (7), new 
correlations between arbitrary constants can be obtained:
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Let us perform similar rearrangements with the use of 
equations (14)–(18) and (8).

A similar solution can be achieved for three differential 
equations (9), (10) and (11) involving functions with odd 
numbers f1(y), f3(y), f5(y), f7(y), represented in the following 
form:
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Substituting (23)–(27) to (9) and performing 
rearrangements, we will obtain the following:
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according to the task condition for stresses, С11=0 shall 
be taken:

2

31 13 2

3 11 7
6( 2 )

BC C
B
α

α
+ −

= −
−

Similar correlations between integration constants 
can be obtained after rearrangement of equation (8) 
considering (23)–(27):
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Analyzing equation (22) at this stage when the 
integration constants are unknown, we shall note that 
the constant С04 does not become zero upon solution of 
bending problems. It is known that in case of an isotropic 
body, the law of normal stress distribution by cross-
sectional height upon bending is linear.

Elastic properties of isotropic bodies are defined by 
three characteristics, two of which are independent:

2(1 )
EG
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As noted above, a similar correlation should exist for a 
cylindrically anisotropic body.

Upon solution of differential equation (2) in Cartesian 
coordinates with application of the stress function in the 
form of a sum of polynomials (4), it was established that 
correlations between integration constants depended on 
elastic constants. This holds in equation (3).

Correlations (20) and (22) between the constants С22 
and С04 come under notice. 

It was noted above that the constant С04 does not 
become zero, therefore, the constant С22 is not equal to 
zero as well. Let us equate factors multiplying С04 in the 
right parts of equations (20) and (22) to each other:
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The same can be performed for factors multiplying the 
constants С31 and С13 in correlations (29) and (30).

As a result of the rearrangement, equation (32) takes 
the following form:
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Results
Based on (3), the shear modulus can be calculated:
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which, considering (35), will be represented by the 
following:
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In case of an isotropic body, the last two equations will 
take the form of equation (31).

Results of equation (33) roots determination under 
different values of α2 are presented in Table 1. This 
correlation is graphically represented in Figure 1.

Table 1. В values at different α2 values

α2
0.3 0.4 0.5 0.6 0.7 0.8

2

(1)
1 5

3
B α+

=
0.8333 1 1.1667 1.3333 1.5 1.6667

2
(2) 3B α= − 2.7 2.6 2.5 2.4 2.3 2.2

Several differences between calculation results 
and some data (Ashkenazi, Ganov, 1981) are due to 
the fact that those data were obtained with the use of 
elasticity characteristics in the direction at the angle of 
45° to principal anisotropy axes transverse to reinforcing 
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fibers. According to the authors (Glukhikh, 2001), the 
method for experimental determination of these elasticity 
characteristics is imperfect.

We obtained results corresponding to relations between 
integration constants in differential equations (6)–(8). 
However, even with account for the fact that the methods 
for determination of elastic constants is imperfect, our 
calculations in most cases are quite close to the available 
data. In the example considered, this holds for the value 
of the equation root B = 3–α2.

It was theoretically confirmed that for an anisotropic 
body the value B can differ from 2 upward or downward 
(excluding B = 2 for an isotropic body).

With account for root (34, a) of algebraic equation (33), 
differential equation in polar coordinates (1) will take the 
following form (Glukhikh, 1998):

4 2 4 2 4

4 2 2 2 4 4

3 2 3 2 2

3 3 2 2 2

2 2 2

4 2 2

1 5 1 2
3

1 5 1
3

1 11 1 0
3

F F F
r r r r r

F F F
r r r r r

F F
r r r

α α
θ θ

α α
θ

α α
θ

∂ + ∂ ∂
+ ⋅ ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂
∂ + ∂ ∂
⋅ − ⋅ ⋅ − ⋅ +
∂ ∂ ∂ ∂
+ ∂ ∂

+ ⋅ ⋅ + ⋅ =
∂ ∂

A similar solution (not given in the article) can be 
performed for a plane problem in displacements, using 
the differential equations obtained earlier.

The differential equations given above allow solving 
tasks related to cylindrically anisotropic orthotropic 
bodies, in which correlations between elastic constants in 
principal anisotropy directions, that are affected by roots 
(34, a) and (34, b) of algebraic equation (33).

For composites, in which the correlation between 
elastic constants in principal anisotropy directions is 
affected by law (37), differential equations can be written 
in the following form:

- in Cartesian coordinates:
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- in polar coordinates (Glukhikh, 1998):
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Figure 1. Changes in equation (33) roots depending on α2.
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- in Cartesian coordinates:
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The full set of characteristics of elastic stress-strain 
behavior of orthotropic materials includes nine independent 
elastic constants subject to experimental determination. 
When determining deformation in an orthotropic material 
in the direction not coinciding with principal anisotropy 
axes, values of elastic constants in an arbitrary direction 
are required. Equations simultaneously including different 
elastic constants (Ashkenazi, 1978; Ashkenazi, Ganov, 
1981; Lekhnitsky, 1957; Rabinovich, 1946) are required 
for calculation purposes:

4 4 4
2 21 1 1
1 1

'

2 2 2 2
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21 1

2 21 1
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µ µ

µ µ

= − − − + + +
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where n1, n2, …m1, m2 — directional cosines.

Considering correlations (32) between elastic 
constants, equation (42) can be written for a cylindrically 
anisotropic orthotropic body in cylindrical coordinates:

4 4 4 2
2 21 1 1
1 1

'

21 3 1 ta

x r t a t ta t

n l m n l
E E E E E G E

µα  −
= + + + + − ⋅ 

 

2 2 2 2
1 1 1 1

21 ar

ar a

l m m n
G E

µ 
⋅ + − 

 

– for the case when B(2) = 3 – α2.
For an anisotropic material, in which elastic constants 

satisfy root (34), equation (45) takes the following form:

4 4 4 2
2 21 1 1
1 1

'

2 2 2 2
1 1 1 1

1 1 5
3

2 21 1
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ta ar
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G E G E

α

µ µ

+
= + + + +

   
+ − + −   
   

Equations allowing determining the Poisson's ratios 
with account for new data (34, a, b) regarding elastic 
constants of a material with curvilinear anisotropy are as 
follows:

– for the anisotropy plane passing through axes XY:

(45)

41 1
2

r r r
rt

t rt rt

E E E
E G E

µ
 

= + + − 
 

where 2α=rt EE ; 2

3
1 5 6

t
rt

tr

EG
α µ

Ι =
+ +

 from (36);   

23 2
t

rt
tr

EG
α µ

ΙΙ =
− +  

from (37);

(45)
rt tE E=  from (45). Substituting (36), (37) and (45)

rtE   
to (47) and after rearrangements, the following is obtained 
for both options of a cylindrically orthotropic material:

2
rt

rt
µµ
α

=

The obtained equation is in good agreement with the 
experimental data (Ashkenazi, Ganov, 1981).

– in two other (longitudinal) planes:

(45)

41 1
2

t t t
ta

a ta ta

E E E
E G E

µ
 

= + + − 
 

(45)

41 1
2

a a a
ar

r ar ar

E E E
E G E

µ
 

= + + − 
 

For the shear modulus upon rotation of axes in polar 
coordinates in the anisotropy plane perpendicular to the 
longitudinal axis with the use of (36):

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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the same, with the use of (37):
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Thus, upon transition from radial to tangential direction, 
the elastic modulus changes from the value Еr to Еt, taking 
at θ = 45 the value Еt, subsequently passing through the 
minimum Еmin.

Such rather simple method to determine the value of 
the elastic modulus (45)

xyE  opens wide possibilities for 
application of equations obtained by Ye.K. Ashkenazi, 
A.N. Mitinsky, S. G. Lekhnitsky, with the purpose to 
calculate other elastic constants.

Excluding the Poisson's ratio from these equations, we 
obtain the following dependencies:

2 4 4 2 2 2
' (45)

4Cos Sin 1 Cos Sint
x t

xy

EE E
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α θ θ α θ θ
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2 2

(45)
' '

1 Cos 2 Sin 2

x y rt xyG G G
θ θ

= +

The elastic modulus (45)
xyE  can also be calculated 

using equations (53), (45).
Equating the terms in round brackets in equations (45) 

and (53), we obtain the following:

(45)

21 4 1 1rt

rt r xy r tG E E E E
µ

− = − −

where
 

21 rt

rt r t

B
G E E

µ
− =

 
or

 
22t

rt
rt

EB
G

α µ= −

The last correlation interconnects elastic constants 
in the plane XY for a cylindrically anisotropic body. 
Upon solving differential equation (8) in polynomials, 
this correlation takes the value satisfying the differential 
equation:

23B α= −

Then,
2

(45)

3 4 1 1

t xy r tE E E E
α−

= − −

After rearrangements, the following is obtained:

(45)
xy tE E=

Equation (52) for the elastic modulus will have the 
following form:

4 4 2
2 2

'

1 Cos Sin 3 Cos Sin
x r t tE E E E

θ θ α θ θ−
= + +

– for the Poisson's ratio:
( )2

2 2
' ' '

2 1
Sin Cos rt

x y x
t r

E
E E
α µµ θ θ

 −
 = − −
  

The first two extreme values (at θ = 0° and θ = π /2) 
correspond to the principal anisotropy planes. The third 
value can be found by equating the multiplier in square 
brackets to zero:

( )( )2 2 2 2 2 22 Cos 2Sin 3 Cos Sin 0α θ θ α θ θ− + + − − =

After rearrangement of the last equation, the following 
is obtained:

2 23Cos Sin 0θ θ− =

wherefrom the value of angle θ: arctg 3 60θ = = °
It should be noted that the abscissa of extremum point 

does not depend from the type of material and the angle 
θ equals 60°.

The extreme value of the elastic modulus corresponding 
to this angle is as follows:

( )2
' min 8 9x tE E E α= = −

As per the calculation results, it can be concluded that 
the elastic modulus reaches its minimum value when the 
slope angle of the growth ring relative to the board face 
(as an example, wood is taken) equals 30°.

It is interesting that, at θ = 45°, the transverse elastic 
modulus has the value equal to Et. 

With account for B=3–α2, the shear modulus 
can be calculated using the equation obtained after 
rearrangement of (54):

( )2
2 2

' '

8 11 1Sin cos
x y t rtG E G

α
θ θ

−
= +

Considering that B=3–α2, and, on the other side, 

r

trt
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t
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we will obtain the following:
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E E
G E
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t
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Considering (63), equation (62) will take the following 
form:

22
2 2

' '

3 21 8( 1) Sin Cos tr

x y t tG E E
α µα θ θ − +−

= +

For the shear modulus upon rotation of axes, we will 
obtain the following equation:

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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(64)

(51)
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EG
α θ α µ

=
− + − +

Let us analyze the obtained function (65) to find the 

extreme value, i.e. ( )' ' 0x y
d G

dθ
=  , and then we will get 

the following equation:

24( 1) Sin4 0tEα θ− =

whence it follows that its left part becomes zero in case 
when Sin4θ is equal to zero, i.e. at θ=0, θ=45° and θ=90°.

At θ=0 and θ=90° we will get the same values: rtyx GG ='' .
At θ = 45° the shear modulus will have the maximum 

value:

(45)
' ' 45 2 1 2

t
x y

tr

EG G
α µ

= =
+ +

After rearrangements, equation (67) will coincide with 
equation (31) as in (Ashkenazi, Ganov, 1981; Ashkenazi, 
1978, Lekhnitsky, 1957).

To calculate the Poisson's ratio μx’y’, let us use equation 
(59) and substitute the following in it:

22 21 1 3xy rt
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– for the angle θ=45°:

(45)
' ' 1

2
t

x y
rt

E
G

µ = −

Theoretically, at some values of Et and Grt, the positive 
value of the Poisson's ratio (45)

' 'x yµ  can be obtained 
from (69), which was observed by Ye.K. Ashkenazi in 
experiments.

Let us demonstrate the process of calculating the 
Poisson's ratio μx’y’ using the existing experimental data 
Et, α2 (Ashkenazi, Ganov, 1981) for natural composites 
with an example.

Example 1
It is required to calculate the Poisson's ratios for pine at 

582tE MPa= , 2 0.5178.α =
The calculated value Grt as per equation (53) is as 

follows: 

187.6rtG MPa= .
Then:
θ=0°; 

3 0.5178 582 /187.6 0.5980
2 0.5178x yµ ′ ′

− + +
= =

⋅

θ=90°; ' '
3 0.5178 582 /187.6 0.31

2x yµ − + +
= =

θ=45°; 

( )
( )

(45)
x'y'

3 0.5178 5822 1 0.5178 0,25
2 2 187.6 0.553

0.5178 0.25 3 0.5178 0.25 0.25
µ

−
− ⋅ − +

⋅= =
⋅ + − ⋅ +

As per the invariant relation / /t r tr rtE E µ µ= , which is 
known in the task involving wood ( 2 0.5178α = ), if we take 
one of the Poisson's ratios according to the experimental 
data (Ashkenazi, Ganov, 1981), e.g. μtr = 0.31, then μrt = 
0.5987 (the empirical value as per (Ashkenazi, Ganov, 
1981): μrt = 0.64) will be obtained. On the contrary, at μrt = 
0.64, the value μrt = 0.33 will be obtained, which is quite 
close to the empirical value.

Example 2
It is required to calculate the Poisson's ratios for spruce 

at Еt = 400 MPa
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0.439rtµ =  The table value of 0.42rtµ =

20.439 0.439 0.5706 0.2505trµ α= ⋅ = ⋅ =

The table value of 0.25rtµ = .
Correlations based on the requirement for the positive 

value of elastic potential are as follows:

a
a

r

E
Eµ <

; 
t

ta
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E
Eµ <

; 
r

rt
t

E
Eµ <

Fulfillment of the following correlation for an orthotropic 
body is checked (Ashkenazi, Ganov, 1981):

(45)
45

2 2 1 4 1

r t rt xyE E G E G
+ + = +

2 22 3 2 1 22 2 4tr tr

t t t t tE E E E E
α µ α µα − + + +

+ + = +

2 2 22 2 3 2 5 2tr tr

t tE E
α α µ α µ+ + − + + +

=

The correlation is observed, the left and right parts are 
identically equal.

The same correlation is observed for pine wood: 

2 2 1 4 1
1124 582 187.6 582 272.2

+ + = +

The value of the directional cosine determining the 
position of axis X ′ , relative to which the function of the 
elastic modulus xE ′   takes the extreme value (in the ХY 

(66)

(68)

(69)

(70) (71)

(65)

(67)
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Table 2. Elastic constants for several wood species.
Wood specie Et, MPa Grt, 

MPa
α2= Et / Er Poisson's ratio as per equation (69) at the following slope angles of the 

growth ring
θ = 0° 15° 30° 45° 60° 75° 90°

Pine 582 187.6 0.5178 0.6
0.64*

0.6068 0.59925 0.553 0.463 0.3646 0.31
0.31*

Spruce 400 136.5
347*

0.5706 0.44
0.42*

0.4658 0.4905 0.4652 0.3905 0.2962 0.25
0.25*

Beech 1,160 361.1
467*

0.5077 0.71
0.75*

0.7 0.668 0.596 0.513 0.4098 0.36
0.36*

Oak 985 312.8 
403*

0.4508 0.665
0.64*

0.6689 0.6412 0.575 0.4766 0.36 0.30
0.30*

Ash 818 256.6
284*

0.5322 0.6765
0.71*

0.6728 0.6493 0.594 0.50586 0.4074 0.36
0.36*

Fir 490 154.1
150*

0.5213 0.672
0.60*

0.6692 0.646 0.59 0.5 0.3993 0.35
0.35*

Maple 890 275.9
287*

0.5742 0.6966
0.82*

0.691 0.6660 0.613 0.531 0.442 0.4
0.40*

Note: * – experimental values (Ashkenazi, Ganov, 1981).

Table 3. Elasticity characteristics of filament-wound fiberglass as per the data presented in some publications 
(Glukhikh, 2008) and as per the results of author's calculations (given in brackets).

Elasticity characteristics

Filler
Strand 19 of VM-1 fiber VM-1 fiber Strand 19 of VM-1 fiber VM-1 fiber

Ratio of fibers

n = ∞ n = 5 n = 2 n = 1

Еа, MPa 5.7 4.76 3.68 3.09
Еr, MPa 1.4 2.07 2.68 2.74
Еt, MPa 1.4 1.45 1.10 1.05
Еar, MPa 1.58 (1.4) 1.59 (2.07) 1.56 (2.68) 1.28 (2.74)
Еrt, MPa 1.4 (1.4) 1.26 (1.45) 1.19 (1.10) 1.07 (1.05)
Еta, MPa 1.58 (1.4) 1.45 (1.45) 1.24 (1.10) 1.07 (1.05)

B ′′ 2.3 3.77 5.15 6.7

Gar, MPa 0.575 (0.484) 0.531 (0.768) 0.505 (1.105) 0.396 (1.174)
B 2 2.89 3.02 2.526
Grt, MPa 0.5 (0.5) 0.436 (0.526) 0.414 (0.373) 0.369 (0.358)

B′ 2.3 2.7 2.25 2.62

Gta, MPa 0.575 (0.484) 0.501 (0.500) 0.447 (0.374) 0.366 (0.356)
μar 0.277 0.149 0.105 0.123
μra 0.068 0.065 0.077 0.110
μrt 0.4 0.325 0.431 0.417
μtr 0.4 0.227 0.177 0.160
μta 0.068 0.099 0.105 0.151
μat 0.277 0.325 0.353 0.443
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plane at l1 = 0), can be found using the following equation 
(Ashkenazi, 1978):

2

(45)

1 2
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3 1 4 3 4
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4 4 8 4 4 8 2
t r xy t t t

t r xy t t t

E E E E E El
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+ − + −
= ± = ± = ±
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i.e. 
1Cos( , )
2

x x′ = ±

Thus, the angle between axes X and X ′  is equal to 
60°. The same result was obtained above. The second 
directional cosine:

2
3

4
111 2

11 ±=−±=−±= lm
,

which corresponds to the angle of 30°.
For equal-reinforced composites (α2 = 1), this angle is 

equal to 45°.
The available standards stipulate for experimental 

determination of 18 elasticity characteristics                                                      
( (45) (45)3 ,3 ,3 ,3 ,3i ik ik ik ikE G Eµ µ ). 

According to the results, the shear moduli are 
determined using the following equation: 

( )
(45)

(45)2 1
ik

ik
ik

EG
µ

=
+

As the correlation (B = 3–α2) is established between 
elastic constants, there is no need in experimental 
determination of (45)

ikE , (45)
ikµ . To determine elastic 

constants, it is sufficient to know their values relative to 
principal anisotropy axes ( 3 iE ; 3 ikµ ; 3 kiµ ). 

Using the equations obtained above, it is possible to 
determine values of  elastic constants relative to any axes 
position.

If the ratio between elastic constants corresponds to 
dependency (34, a) for some composites, then equations 
for the elastic modulus, Poisson's ratio, and shear modulus 
will be as follows:
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EE
α

=
+

Upon an analysis of function (72) to find the extreme 
value, the following equation is obtained:

2 2Cos 5Sin 0θ θ+ = ,
whence it follows that the elastic modulus xE ′  does 

not take the third extreme value upon rotation of axes. At 
B < 2, composites have only two main modulus values: Еr 
and Et.

Analyzing shear modulus function (74) at rotation of 
axes in the plane of cross-section to find the extreme 
value, similar extreme values (as at B = 3–α2) are obtained. 
At other values of the angle θ, shear moduli differ.

Based on equation (75), it is possible to obtain the 
value of the Poisson's ratio at 45θ = ° :

( )
(45)

2

3 1
2 1 2

t
x y

rt

E
G

µ
α′ ′ = −

+

The Poisson's ratio can be positive if the following 
correlation is observed:

21 2
2 3

t

rt

E
G

α+
<

Comparison of calculated values of elastic constants 
using the obtained equations with the experimental data 
for a cylindrically anisotropic body through the example 
of fiberglass materials (Table 3) allows checking the 
original assumptions underlying the conclusion on their 
applicability to the examined material. At the B value 
within the range from 2 to 3, calculated values of elasticity 
characteristics are quite close to the experimental 
ones. At values exceeding 3, noticeable deviation of 
the calculated shear modulus Gar from the experimental 
value is observed. This is due to the fact that at values 
exceeding 3, the parameter B does not satisfy differential 
equation (1). The B value can be affected by inaccuracy in 
determination of μra, Gar, and imperfection of experiment 
methods.

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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