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Abstract
In this work, derivation of equations of a mixed type for shallow shell constructions of an arbitrary type is carried out 

by means of the variational method. Such equations are more simplified equations of the shell theory, as compared to 
equations in displacements, but in case of some types of fixing of shell edges (for example, in case of pin-edge and 
movable fixing) they are more convenient. The mathematical model of shell deformation is based on the Kirchhoff–Love 
hypotheses, geometrical nonlinearity is taken into consideration.

The full functional of shell energy is used for derivation of equilibrium equations and the third equation of strain 
compatibility in the middle surface of a shell, its minimum condition (the first variation of the functional has to be equal 
to zero) giving place to these equations. The stress function is entered in the middle surface of the shell in such a way 
as to make the first two equilibrium equations vanish identically. Thus, the third equilibrium equation and the equation 
of strain compatibility give the equation of a mixed type in relation to the deflection function and the stress function in 
the middle surface.

Key words: shells, mathematical model, equations of a mixed type, variational method.

Introduction
Intensive development of the nonlinear shell theory be-

gins in the 1930/40s. Primarily, it concerns shallow shells 
(Kh.M. Mushtari (1939), L.N. Donell (1934), V.Z. Vlasov 
(1949)).

With the advent of computer in the early 1960s, ge-
ometrical nonlinearity started to be considered in shell 
stability analysis. For shallow shells of right-angular de-
sign, the analysis was carried out mainly on the basis of 
equations of a mixed type (V.Z. Vlasov (1949), V.V. Pet-
rov (1975), V.A. Krysko (1976), etc.), which are still used 
quite often (Nikitin, Stupishin, and Vatanin, 2012; Kolo-
moets and Modin, 2014; Spasskaya and Treshchev, 2015; 
Shen S-H. and Yang D-Q., 2014; Zhang J. and van Camp-
en D.H., 2003; van Campen et al., 2002; Seffen, 2007; 
Karpov, 2010, etc.). Shells of uniform thickness, for which 
equations of a mixed type were obtained by V. Z. Vlasov, 
were mainly considered.

Equations of a mixed type are derived only for shallow 
shells; nevertheless, they are widely used in construction, 

as it is easy to choose approximating functions for such 
equations in case of pin-edge and movable fixing of the 
shell contour. Such a form of fixing allows to avoid stress 
concentration near the shell contour, but it is difficult to 
choose approximating functions for it when using equa-
tions in displacements.

In this work, equations of a mixed type for shells of an 
arbitrary type (but shallow) are derived. The third equilibri-
um equation and one of the equations of strain compatibil-
ity are used for derivation of these equations in the middle 
surface of the shell. Equations of strain compatibility for 
shells of a general type were obtained for the first time 
by A.L. Goldenveyzer (1940) by means of formulation of 
the Gauss–Codazzi conditions for the deformed middle 
surface.

Subject matter, tasks and methods
The objective of this work is derivation of equations of 

a mixed type for shallow shell constructions of an arbitrary 
type.
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Findings and discussion
Equations of a mixed type are more simplified equa-

tions of the shell theory, as compared to equations in dis-
placements, but in case of some types of fixing of shell 
edges (for example, in case of pin-edge and movable fix-
ing) they are more convenient.

Now, we will obtain equations of a mixed type, which 
represent a system of two differential equations in relation 
to normal displacement W W x y= ( ),  and the stress func-
tion in the middle surface Φ Φ= ( )x y, .

Let the normal static loading , which is rather uniformly 
distributed across the surface, influence the shell. Let us 
believe that the shell is either shallow or splits into shallow 
parts in the process of deformation. The middle surface 
of the shell in thickness is taken as a coordinate surface. 
The x- and y-axes of the orthogonal coordinate system 
are directed along the lines of principal curvatures of the 
shell, the z-axis is directed orthogonally to the coordinate 
surface towards concavity.

Let us enter the stress function Φ( , )x y  , connected 
with the forces by the following dependences (Pertsev 
and Platonov, 1987):

One of the methods for obtaining equations of a mixed 
type is as follows:

If we substitute (1) in the first two equilibrium equa-
tions, these equations will be identically satisfied. And the 
third equilibrium equation

will give the first equation of a mixed type after re-
placement of the forces N N Nx y xy, ,  through the function 
Φ x y,( )  according to rule (1). In addition, the moments are 
expressed through the function W x y,( )  and
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, ;

 here, A,B — Lame 
parameters.

The second equation of the system is found by means 
of the third equation of strain compatibility:

Here,

From the ratios

we will express deformations through forces and re-
place forces in them by the expressions (1)

Here, E, μ — modulus of elasticity and Poisson's ratio 
of the shell material.

Further, we will substitute the found expressions of 
deformations in the third equation of strain compatibility.

Let us consider the variational method for derivation 
of equations of a mixed type (Karpov, 2010) to substanti-
ate the considered method for derivation of equations of 
a mixed type and derivation of the third equation of strain 
compatibility.

Equations of a mixed type can be obtained from the 
minimum condition of the full functional (Abovskiy, An-
dreev, and Deruga, 1978), which can be written in the fol-
lowing form

Here, ε ε γx y xy, ,  — deformations expressed through 
displacements, and   ε ε γx y xy, , — deformations expressed 
through forces (2); χ χ χ

1 2 12
, ,  — deformations connected 

with bending and torsion, expressed through deflection , 
and   χ χ χ

1 2 12
, ,  — deformations expressed through mo-

ments, but they coincide for shells of uniform thickness 
respectively with χ χ χ

1 2 12
, , .

Finding the first variation of the functional (3) and set-
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Let us transform the variational equation in such a way 
that there are no variations from derived functions under 
the double integral sign. As a result, we will obtain
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Factors at δU  and δV  in the double integral have to 
be equal to zero and these are the 1st and the 2nd equi-
librium equations.

If we carry out some analysis of the obtained variation-
al equation, we will notice that ε ε γx y xy, ,  and   ε ε γx y xy, ,  are 
the same deformations, only having different expressions, 
thus ε εx x− = 0, ε εy y− = 0, γ γxy xy− = 0. Therefore, fac-

tors at δ δ δΦ
Φ Φ, ,∂
∂

∂
∂x y

 will be identically equal to zero in 

one-dimensional integrals.
Now, let us analyze factors in a double integral atδΦ .  

The underlined expression can be written in the following 
form

This expression represents the right part of the third 
equation of strain compatibility. If we substitute the ex-
pression of deformation through displacements in it, the 
terms of the equation containing U and V will be mutually 
reduced and it will be as follows

The expression, not underlined and standing as a fac-
tor at δΦ .  in the double integral, can be transformed:

Thus, the factor at δΦ .  in the double integral will be 
as follows

On the basis of the equation of strain compatibility, the 
last two summands are equal to

As the factor before δΦ .  in the double integral shall 
vanish, we will obtain

On the one hand, the third equation of strain compat-
ibility is obtained by the variational method. On the other 
hand, having replaced   ε ε γx y xy, ,  by their expressions (2), 
we will obtain one of the equations of a mixed type. The 
second equation of a mixed type is obtained by means of 
setting the factor at δW  in the double integral equal to 
zero and replacement of the forces by expressions (1) in it:
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VARIATIONAL METHOD FOR DERIVATION OF EQUATIONS OF MIXED TYPE 

FOR SHELLS OF A GENERAL TYPE

If shallow shells of right-angled design (A = 1, B = 1) are 
considered, the equations (4) are written as

where

The system of equations (4) is a system of differential 
equations in partial derivatives of the eighth order in rela-
tion to the required functions W x y,( )  and Φ x y,( )  (each 
of these functions contains derivatives up to and includ-
ing the fourth order on variables x and y). For solution of 
this system, it is necessary to set four edge conditions on 
each edge of the shell.

It is possible to write edge conditions (factors standing 

before δ δ
δ
δ

δ
δ
δ

Φ
Φ Φ, ,
x y

 are identically equal to zero)

at x x a= =0,

at y y b= =0,

from the equality to zero of one-dimensional integrals 
in the variational equation obtained after transformation, 
having reduced factors standing before 

δ δ δ δ δU V W W
x

W
y

, , , ,∂
∂

∂
∂

, to the form containing forces 

and moments.

Besides, we have Mxy = 0  or W = 0  in the angular 
points of the shell contour at x x a= =0,  and y = 0  or 
y b= .

Equations of a mixed type are often applied in case of 
pin-edge and movable fixing of the shell contour.

In this case, for example, at x = 0, x=a U ≠ 0 therefore 

it shall be N F V W Mx x= = = = =
1

0 0 0 0( ) , , , .Φ .The func-
tion W(x,y) along the y-axis shall not change, therefore 

∂
∂

=
W
y

0  consequently, ε y = 0.

Thus, the conditions shall be fulfilled at x x a= =0,

Calculations
In the work (Petrov, 1975), stability calculation of the 

shallow shells of right-angular design (Lame parameters 
A = 1, B = 1) with pin-edge and movable fixing along the 
contour and being subjected to external uniformly distrib-
uted load is performed; moreover, the Bubnov–Galerkin 
method at one-term approximation of the required func-
tions and the method of consecutive loadings (Petrov, 
1975) are used for solution of equations of a mixed type. 

The critical load amounted to P P a q
h Ekr = =
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4

4
 at val-

ues of the principal dimensionless curvatures of the shell 

k k k a
hRξ η ξ= = =
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2

. The performed calculation of the 

same structure at constraint of 9 terms in expansion of the 
required functions gave the result Pkr = 485 .

Further, the calculation of panels of steel toroid-shape 
shells (Lame parameters A r B d r x= = +, sin ) when using 
the fore-quoted equations of a mixed type was performed. 
The obtained values of critical loads for all the considered 
panels at d = 2 m are shown in Table 1.

Table 1. Critical loads for panels of steel toroid-shape shells
No. a, rad b, rad h, m r, m qkr, MPa

1 Pi/2 Pi/2 0.1 13 1.596

2 Pi/2 Pi/2 0.1 25 0.1448

3 Pi/2 Pi/2 0.1 5 3.7572

4 Pi/2 Pi/2 0.05 13 0.0308

5 Pi/2 Pi/2 0.05 25 0.3872

6 Pi/2 Pi/2 0.05 5 1.7608

7 Pi/2 Pi/2 0.025 13 0.3972

8 Pi/2 Pi/2 0.025 25 0.1936

9 Pi/2 Pi/2 0.025 5 0.8544

Thus, the critical load increases for panels of toroid-
shape shells with increase in the shell thickness h, reduc-
tion in the radius of curvature r and increase in the angle 
of turn.

Conclusions
Shell constructions are used for covering of large span 

structures in the construction industry. Except for shallow 
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shells of right-angular design, the panels of cylindrical, con-
ical, toroidal shells and shallow spherical shells (domes) 
are widely used. The obtained equations for the shells of 
an arbitrary form, in which geometrical nonlinearity is tak-
en into consideration, allow to easily select approximating 

functions at their calculation for pin-edge and movable 
fixing of the construction contour. Such a way of fixing of 
the shell contour allows to avoid stress concentration near 
edges of the construction, i. e. in the most dangerous area, 
where plastic and creep deformations develop most often.
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